
https://books.google.bg/books?id=MmCWCwAAQBAJ

Lecture Slides for the C++ Programming Language

(Version: 2016-01-18)

Current with the C++14 Standard

Michael D. Adams

Department of Electrical and Computer Engineering

University of Victoria

Victoria, British Columbia, Canada

For additional information and resources related to these lecture slides (including errata and lecture

videos covering the material on many of these slides), please visit:

http://www.ece.uvic.ca/˜mdadams/cppbook

If you like these lecture slides, please show your support by posting a review of them on Google Play:

https://play.google.com/store/search?q=Michael%20D%20Adams%20C%2B%2B&c=books

The author has taken care in the preparation of this document, but makes no expressed or implied warranty of any kind and assumes no

responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use

of the information or programs contained herein.

Copyright c 2015, 2016 Michael D. Adams

Published by the University of Victoria, Victoria, British Columbia, Canada

This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License. A copy

of this license can be found on page iii of this document. For a simple explanation of the rights granted by this license, see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

This document
was typeset

with
LATEX.

ISBN 978-1-55058-582-7 (paperback)

ISBN 978-1-55058-583-4 (PDF)

License I

Creative Commons Legal Code

Attribution-NonCommercial-NoDerivs 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE

LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN

ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS

INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES

REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR

DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE

COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY

COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS

AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE

TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY

BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS

CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND

CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and

other pre-existing works, such as a translation, adaptation,

derivative work, arrangement of music or other alterations of a

literary or artistic work, or phonogram or performance and includes

cinematographic adaptations or any other form in which the Work may be

recast, transformed, or adapted including in any form recognizably

derived from the original, except that a work that constitutes a

Collection will not be considered an Adaptation for the purpose of

this License. For the avoidance of doubt, where the Work is a musical

work, performance or phonogram, the synchronization of the Work in

timed-relation with a moving image ("synching") will be considered an

Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as

encyclopedias and anthologies, or performances, phonograms or

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 iii

License II

broadcasts, or other works or subject matter other than works listed

in Section 1(f) below, which, by reason of the selection and

arrangement of their contents, constitute intellectual creations, in

which the Work is included in its entirety in unmodified form along

with one or more other contributions, each constituting separate and

independent works in themselves, which together are assembled into a

collective whole. A work that constitutes a Collection will not be

considered an Adaptation (as defined above) for the purposes of this

License.

c. "Distribute" means to make available to the public the original and

copies of the Work through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that

offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic work,

the individual, individuals, entity or entities who created the Work

or if no individual or entity can be identified, the publisher; and in

addition (i) in the case of a performance the actors, singers,

musicians, dancers, and other persons who act, sing, deliver, declaim,

play in, interpret or otherwise perform literary or artistic works or

expressions of folklore; (ii) in the case of a phonogram the producer

being the person or legal entity who first fixes the sounds of a

performance or other sounds; and, (iii) in the case of broadcasts, the

organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms

of this License including without limitation any production in the

literary, scientific and artistic domain, whatever may be the mode or

form of its expression including digital form, such as a book,

pamphlet and other writing; a lecture, address, sermon or other work

of the same nature; a dramatic or dramatico-musical work; a

choreographic work or entertainment in dumb show; a musical

composition with or without words; a cinematographic work to which are

assimilated works expressed by a process analogous to cinematography;

a work of drawing, painting, architecture, sculpture, engraving or

lithography; a photographic work to which are assimilated works

expressed by a process analogous to photography; a work of applied

art; an illustration, map, plan, sketch or three-dimensional work

relative to geography, topography, architecture or science; a

performance; a broadcast; a phonogram; a compilation of data to the

extent it is protected as a copyrightable work; or a work performed by

a variety or circus performer to the extent it is not otherwise

considered a literary or artistic work.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 iv

License III

g. "You" means an individual or entity exercising rights under this

License who has not previously violated the terms of this License with

respect to the Work, or who has received express permission from the

Licensor to exercise rights under this License despite a previous

violation.

h. "Publicly Perform" means to perform public recitations of the Work and

to communicate to the public those public recitations, by any means or

process, including by wire or wireless means or public digital

performances; to make available to the public Works in such a way that

members of the public may access these Works from a place and at a

place individually chosen by them; to perform the Work to the public

by any means or process and the communication to the public of the

performances of the Work, including by public digital performance; to

broadcast and rebroadcast the Work by any means including signs,

sounds or images.

i. "Reproduce" means to make copies of the Work by any means including

without limitation by sound or visual recordings and the right of

fixation and reproducing fixations of the Work, including storage of a

protected performance or phonogram in digital form or other electronic

medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,

limit, or restrict any uses free from copyright or rights arising from

limitations or exceptions that are provided for in connection with the

copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,

Licensor hereby grants You a worldwide, royalty-free, non-exclusive,

perpetual (for the duration of the applicable copyright) license to

exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more

Collections, and to Reproduce the Work as incorporated in the

Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated

in Collections.

The above rights may be exercised in all media and formats whether now

known or hereafter devised. The above rights include the right to make

such modifications as are technically necessary to exercise the rights in

other media and formats, but otherwise you have no rights to make

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 v

License
IV

Adaptations. Subject to 8(f), all rights not expressly granted by Licensor

are hereby reserved, including but not limited to the rights set forth in

Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made

subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms

of this License. You must include a copy of, or the Uniform Resource

Identifier (URI) for, this License with every copy of the Work You

Distribute or Publicly Perform. You may not offer or impose any terms

on the Work that restrict the terms of this License or the ability of

the recipient of the Work to exercise the rights granted to that

recipient under the terms of the License. You may not sublicense the

Work. You must keep intact all notices that refer to this License and

to the disclaimer of warranties with every copy of the Work You

Distribute or Publicly Perform. When You Distribute or Publicly

Perform the Work, You may not impose any effective technological

measures on the Work that restrict the ability of a recipient of the

Work from You to exercise the rights granted to that recipient under

the terms of the License. This Section 4(a) applies to the Work as

incorporated in a Collection, but this does not require the Collection

apart from the Work itself to be made subject to the terms of this

License. If You create a Collection, upon notice from any Licensor You

must, to the extent practicable, remove from the Collection any credit

as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3

above in any manner that is primarily intended for or directed toward

commercial advantage or private monetary compensation. The exchange of

the Work for other copyrighted works by means of digital file-sharing

or otherwise shall not be considered to be intended for or directed

toward commercial advantage or private monetary compensation, provided

there is no payment of any monetary compensation in connection with

the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You

must, unless a request has been made pursuant to Section 4(a), keep

intact all copyright notices for the Work and provide, reasonable to

the medium or means You are utilizing: (i) the name of the Original

Author (or pseudonym, if applicable) if supplied, and/or if the

Original Author and/or Licensor designate another party or parties

(e.g., a sponsor institute, publishing entity, journal) for

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 vi

License V

attribution ("Attribution Parties") in Licensor’s copyright notice,

terms of service or by other reasonable means, the name of such party

or parties; (ii) the title of the Work if supplied; (iii) to the

extent reasonably practicable, the URI, if any, that Licensor

specifies to be associated with the Work, unless such URI does not

refer to the copyright notice or licensing information for the Work.

The credit required by this Section 4(c) may be implemented in any

reasonable manner; provided, however, that in the case of a

Collection, at a minimum such credit will appear, if a credit for all

contributing authors of Collection appears, then as part of these

credits and in a manner at least as prominent as the credits for the

other contributing authors. For the avoidance of doubt, You may only

use the credit required by this Section for the purpose of attribution

in the manner set out above and, by exercising Your rights under this

License, You may not implicitly or explicitly assert or imply any

connection with, sponsorship or endorsement by the Original Author,

Licensor and/or Attribution Parties, as appropriate, of You or Your

use of the Work, without the separate, express prior written

permission of the Original Author, Licensor and/or Attribution

Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in

which the right to collect royalties through any statutory or

compulsory licensing scheme cannot be waived, the Licensor

reserves the exclusive right to collect such royalties for any

exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in

which the right to collect royalties through any statutory or

compulsory licensing scheme can be waived, the Licensor reserves

the exclusive right to collect such royalties for any exercise by

You of the rights granted under this License if Your exercise of

such rights is for a purpose or use which is otherwise than

noncommercial as permitted under Section 4(b) and otherwise waives

the right to collect royalties through any statutory or compulsory

licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to

collect royalties, whether individually or, in the event that the

Licensor is a member of a collecting society that administers

voluntary licensing schemes, via that society, from any exercise

by You of the rights granted under this License that is for a

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 vii

License
VI

purpose or use which is otherwise than noncommercial as permitted

under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be

otherwise permitted by applicable law, if You Reproduce, Distribute or

Publicly Perform the Work either by itself or as part of any

Collections, You must not distort, mutilate, modify or take other

derogatory action in relation to the Work which would be prejudicial

to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR

OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY

KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,

INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,

FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF

LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,

WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION

OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE

LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR

ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES

ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate

automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Collections from You under

this License, however, will not have their licenses terminated

provided such individuals or entities remain in full compliance with

those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any

termination of this License.

b. Subject to the above terms and conditions, the license granted here is

perpetual (for the duration of the applicable copyright in the Work).

Notwithstanding the above, Licensor reserves the right to release the

Work under different license terms or to stop distributing the Work at

any time; provided, however that any such election will not serve to

withdraw this License (or any other license that has been, or is

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 viii

License VII

required to be, granted under the terms of this License), and this

License will continue in full force and effect unless terminated as

stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection,

the Licensor offers to the recipient a license to the Work on the same

terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under

applicable law, it shall not affect the validity or enforceability of

the remainder of the terms of this License, and without further action

by the parties to this agreement, such provision shall be reformed to

the minimum extent necessary to make such provision valid and

enforceable.

c. No term or provision of this License shall be deemed waived and no

breach consented to unless such waiver or consent shall be in writing

and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with

respect to the Work licensed here. There are no understandings,

agreements or representations with respect to the Work not specified

here. Licensor shall not be bound by any additional provisions that

may appear in any communication from You. This License may not be

modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this

License were drafted utilizing the terminology of the Berne Convention

for the Protection of Literary and Artistic Works (as amended on

September 28, 1979), the Rome Convention of 1961, the WIPO Copyright

Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996

and the Universal Copyright Convention (as revised on July 24, 1971).

These rights and subject matter take effect in the relevant

jurisdiction in which the License terms are sought to be enforced

according to the corresponding provisions of the implementation of

those treaty provisions in the applicable national law. If the

standard suite of rights granted under applicable copyright law

includes additional rights not granted under this License, such

additional rights are deemed to be included in the License; this

License is not intended to restrict the license of any rights under

applicable law.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 ix

License VIII

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty

whatsoever in connection with the Work. Creative Commons will not be

liable to You or any party on any legal theory for any damages

whatsoever, including without limitation any general, special,

incidental or consequential damages arising in connection to this

license. Notwithstanding the foregoing two (2) sentences, if Creative

Commons has expressly identified itself as the Licensor hereunder, it

shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the

Work is licensed under the CCPL, Creative Commons does not authorize

the use by either party of the trademark "Creative Commons" or any

related trademark or logo of Creative Commons without the prior

written consent of Creative Commons. Any permitted use will be in

compliance with Creative Commons’ then-current trademark usage

guidelines, as may be published on its website or otherwise made

available upon request from time to time. For the avoidance of doubt,

this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 x

Other
Textbooks

and Lecture Slides
by the Author I

1
M. D. Adams, Multiresolution Signal and Geometry Processing: Filter

Banks, Wavelets, and Subdivision (Version 2013-09-26), University of

Victoria, Victoria, BC, Canada, Sept. 2013, xxxviii + 538 pages, ISBN

978-1-55058-507-0 (print), ISBN 978-1-55058-508-7 (PDF). Available

from Google Books, Google Play Books, University of Victoria Bookstore,

and author’s web site http://www.ece.uvic.ca/˜mdadams/

waveletbook.

2 M. D. Adams, Lecture Slides for Multiresolution Signal and Geometry

Processing (Version 2015-02-03), University of Victoria, Victoria, BC,

Canada, Feb. 2015, xi+ 587 slides, ISBN 978-1-55058-535-3 (print),

ISBN 978-1-55058-536-0 (PDF). Available from Google Books, Google

Play Books, University of Victoria Bookstore, and author’s web site

http://www.ece.uvic.ca/˜mdadams/waveletbook.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 xi

Other
Textbooks

and Lecture Slides
by the Author II

3
M. D. Adams, Continuous-Time Signals and Systems (Version

2013-09-11), University of Victoria, Victoria, BC, Canada, Sept. 2013, xxx

+ 308 pages, ISBN 978-1-55058-495-0 (print), ISBN 978-1-55058-506-3

(PDF). Available from Google Books, Google Play Books, University of

Victoria Bookstore, and author’s web site http://www.ece.uvic.ca/˜mdadams/sigsysbook.

4
M. D. Adams, Lecture Slides for Continuous-Time Signals and Systems

(Version 2013-09-11), University of Victoria, Victoria, BC, Canada, Dec.

2013, 286 slides, ISBN 978-1-55058-517-9 (print), ISBN

978-1-55058-518-6 (PDF). Available from Google Books, Google Play

Books, University of Victoria Bookstore, and author’s web site http://

www.ece.uvic.ca/˜mdadams/sigsysbook.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 xii

Other
Textbooks

and Lecture Slides
by the Author III

5
M. D. Adams, Lecture Slides for Signals and Systems (Version

2016-01-25), University of Victoria, Victoria, BC, Canada, Jan. 2016, xvi +

481 slides, ISBN 978-1-55058-584-1 (print), ISBN 978-1-55058-585-8

(PDF). Available from Google Books, Google Play Books, University of

Victoria Bookstore, and author’s web site http://www.ece.uvic.ca/˜mdadams/sigsysbook.

Copyright c
2015, 2016

Michael D.
Adams

xiiiC++ Version: 2016-01-18

Part 0

Preface

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 xiv

About These Lecture Slides

This document constitutes a detailed set of lecture slides on the C++

programming language and is current with the C++14 standard.

Many aspects of the C++ language are covered from introductory to more

advanced.

Some aspects of the C++ standard library are also introduced.

In addition, various general programming-related topics are considered.

Copyright c
2015, 2016

Michael D.
Adams

xvC++ Version: 2016-01-18

Acknowledgments

The author would like to thank Robert Leahy for reviewing various drafts of

many of these slides and providing many useful comments that allowed

the quality of these materials to be improved significantly.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 xvi

Disclaimer

Many code examples are included throughout these slides.

Often, in order to make an example short enough to fit on a slide,

compromises had to be made in terms of good programming style.

These deviations from good style include (but are not limited to) such

things as:

1 frequently formatting source code in unusual ways to conserve vertical

space in listings;

2
not fully documenting source code with comments;

3 using short meaningless identifier names; and

4
engaging other evil behavior such as using many global variables and

employing constructs like “using namespace std;”.

Copyright c
2015, 2016

Michael D.
Adams

C++ xviiVersion: 2016-01-18

Typesetting Conventions

In a definition, the term being defined is often typeset in a font like this.

To emphasize particular words, the words are typeset in a font like this.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 xviii

Part 1

Software

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 1

Why
Is

Software Important?

almost all electronic devices run some software

automobile engine control system, implantable medical devices, remote

controls, office machines (e.g., photocopiers), appliances (e.g.,

televisions, refrigerators, washers/dryers, dishwashers, air conditioner),

power tools, toys, mobile phones, media players, computers, printers,

photocopies, disk drives, scanners, webcams, MRI machines

Copyright c
2015, 2016

Michael D.
Adams

2C++ Version: 2016-01-18

Why Software-Based Solutions?

more cost effective to implement functionality in software than hardware

software bugs easy to fix, give customer new software upgrade

hardware bugs extremely costly to repair, customer sends in old device

and manufacturer sends replacement

systems increasingly complex, bugs unavoidable

allows new features to be added later

implement only absolute minimal functionality in hardware, do the rest in

software

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 3

Software-Related
Jobs

many more software jobs than hardware jobs

relatively small team of hardware designers produce platform like iPhone

thousands of companies develop applications for platform

only implement directly in hardware when absolutely necessary (e.g., for

performance reasons)

Copyright c
2015, 2016

Michael D.
Adams

4C++ Version: 2016-01-18

Which
Language to Learn?

C, C++, Fortran, Java, MATLAB, C#, Objective C

programming language popularity

http://www.tiobe.com/TIOBE Software Programming Community

Index Jan 2011 all in top four: Java, C, C++ MATLAB (23rd) Fortran (27th)

Programming Language Popularity Normalized Comparison http://

www.langpop.com/top three languages: C, Java, C++

international standard

vendor neutral

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 5

C

created by Dennis Ritchie, AT&T Bell Labs in 1970s

international standard ISO/IEC 9899:2011 (informally known as “C11”)

available on wide range of platforms, from microcontrollers to

supercomputers; very few platforms for which C compiler not available

procedural, provides language constructs that map efficiently to machine

instructions

does not directly support object-oriented or generic programming

application domains: system software, device drivers, embedded

applications, application software

greatly influenced development of C++

when something lasts in computer industry for more than 40 years

(outliving its creator), must be good

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 6

C++

created by Bjarne Stroustrup, Bell Labs

originally C with Classes, renamed as C++ in 1983

most recent specification of language in ISO/IEC 14882:2014 (informally

known as “C++14”)

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming

maintains efficiency of C

application domains: systems software, application software, device

drivers, embedded software, high-performance server and client

applications, entertainment software such as video games, native code for

Android applications

greatly influenced development of C# and Java

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 7

Java

developed in 1990s by James Gosling at Sun Microsystems (later bought

by Oracle Corporation)

de facto standard but not international standard

usually less efficient than C and C++

simplified memory management (with garbage collection)

direct support for object-oriented programming

application domains: web applications, Android applications

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 8

MATLAB

proprietary language, developed by The MathWorks

not general-purpose programming language

application domain: numerical computing

used to design and simulate systems

not used to implement real-world systems

Copyright c
2015, 2016

Michael D.
Adams

C++ 9Version: 2016-01-18

Fortran

designed by John Backus, IBM, in 1950s

international standard ISO/IEC 1539-1:2010 (informally known as ”Fortran

2008”)

application domain: scientific and engineering applications, intensive

supercomputing tasks such as weather and climate modelling, finite

element analysis, computational fluid dynamics, computational physics,

computational chemistry

Copyright c
2015, 2016

Michael D.
Adams

10C++ Version: 2016-01-18

C#

developed by Microsoft, team led by Anders Hejlsberg

ECMA-334 and ISO/IEC 23270:2006

most recent language specifications not standardized by ECMA or

ISO/IEC

intellectual property concerns over Microsoft patents

object oriented

Copyright c
2015, 2016

Michael D.
Adams

11C++ Version: 2016-01-18

Objective C

developed by Tom Love and Brad Cox of Stepstone (later bought by NeXT

and subsequently Apple)

used primarily on Apple Mac OS X and iOS

strict superset of C

no official standard that describes Objective C

authoritative manual on Objective-C 2.0 available from Apple

Copyright c
2015, 2016

Michael D.
Adams

12C++ Version: 2016-01-18

Why
Learn

C++?

vendor neutral

international standard

general purpose

powerful yet efficient

loosely speaking, includes C as subset; so can learn two languages (C++

and C) for price of one

easy to move from C++ to other languages but often not in other direction

many other popular languages inspired by C++

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 13

Part 2

C++

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 14

Section 2.1

History of C++

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 15

Motivation

developed by Bjarne Stroustrup starting in 1979 at Computing Science

Research Center of Bell Laboratories, Murray Hill, NJ, USA

doctoral work in Computing Laboratory of University of Cambridge,

Cambridge, UK

study alternatives for organization of system software for distributed

systems

required development of relatively large and detailed simulator

dissertation:

B. Stroustrup. Communication and Control in Distributed Computer

Systems.

PhD thesis, University of Cambridge, Cambridge, UK, 1979.

in 1979, joined Bell Laboratories after having finished doctorate

work started with attempt to analyze UNIX kernel to determine to what

extent it could be distributed over network of computers connected by LAN

needed way to model module structure of system and pattern of

communication between modules

no suitable tools available

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 16

Objectives

had bad experiences writing simulator during Ph.D. studies; originally

used Simula for simulator; later forced to rewrite in BCPL for speed; more

low level than C; BCPL was horrible to use

notion of what properties good tool would have motivated by these

experiences

suitable tool for projects like simulator, operating system, other systems

programming tasks should:

support for effective program organization (like in Simula) (i.e., classes,

some form of class hierarchies, some form of support for concurrency,

strong checking of type system based on classes)

produce programs that run fast (like with BCPL)

be able to easily combine separately compilable units into program (like

with BCPL)

have simple linkage convention, essential for combining units written in

languages such as C, Algol68, Fortran, BCPL, assembler into single

program

allow highly portable implementations (only very limited ties to operating

system)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 17

Timeline
for C with

Classes (1979–1983)
I

May 1979 work on C with Classes starts

Oct 1979 initial version of Cpre, preprocessor that added Simula-like

classes to C; language accepted by preprocessor later started

being referred to as C with Classes

Mar 1980 Cpre supported one real project and several experiments (used

on about 16 systems)

Apr 1980 first internal Bell Labs paper on C with Classes published (later

to appear in ACM SIGPLAN Notices in Jan. 1982)

B. Stroustrup. Classes: An abstract data type facility for the

C language.

Bell Laboratories Computer Science Technical Report

CSTR-84, Apr. 1980.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 18

Timeline
for C with

Classes (1979–1983) II

1980 initial 1980 implementation had following features:

classes

derived classes

public/private access control

constructors and destructors

call and return functions (call function implicitly called before

every call of every member function; return function implicitly

called after every return from every member function; can be

used for synchronization)

friend classes

type checking and conversion of function arguments

1981 in 1981, added:

inline functions

default arguments

overloading of assignment operator

Jan 1982 first external paper on C with Classes published

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 19

Timeline for C with
Classes (1979–1983) III

C language.

B. Stroustrup. Classes: An abstract data type facility for the

ACM SIGPLAN Notices, 17(1):42–51, Jan. 1982.

Feb 1983 more detailed paper on C with Classes published

B. Stroustrup. Adding classes to the C language: An

exercise in language evolution.

1983.

Software: Practice and Experience, 13(2):139–161, Feb.

C with Classes proved very successful; generated considerable interest

first real application of C with Classes was network simulators

Copyright c
2015, 2016

Michael D.
Adams

20C++ Version: 2016-01-18

Timeline
for

C84 to
C++98

(1982–1998)
I

started to work on cleaned up and extended successor to C with Classes,

initially called C84 and later renamed C++

Spring 1982 started work on Cfront compiler front-end for C84;

initially written in C with Classes and then transcribed to C84;

traditional compiler front-end performing complete check of

syntax and semantics of language, building internal

representation of input, analyzing and rearranging

representation, and finally producing output for some code

generator;

generated C code as output;

difficult to bootstrap on machine without C84 compiler; Cfront

software included special “half-processed” version of C code

resulting from compiling Cfront, which could be compiled with

native C compiler and resulting executable then used to compile

Cfront

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 21

Timeline
for

C84 to
C++98

(1982–1998)
II

Dec 1983 C84 (C with Classes) renamed C++;

name used in following paper prepared in Dec. 1983

B. Stroustrup. Data abstraction in C.

Bell Labs Technical Journal, 63(8):1701–1732, Oct. 1984.

(name C++ suggested by Rick Mascitti)

1983 virtual functions added

Note: going from C with Classes to C84 added: virtual functions,

function name and operator overloading, references, constants

(const), user-controlled free-store memory control, improved

type checking

Jan 1984 first C++ manual

B. Stroustrup. The C++ reference manual.

AT&T Bell Labs Computer Science Technical Report No.

108, Jan. 1984.

Sep 1984 paper describing operator overloading published

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 22

Timeline
for

C84 to
C++98 (1982–1998) III

B. Stroustrup. Operator overloading in C++.

In Proc. IFIP WG2.4 Conference on System Implementation

Languages: Experience & Assessment, Sept. 1984.

1984 stream I/O library first implemented and later presented in

B. Stroustrup. An extensible I/O facility for C++.

In Proc. of Summer 1985 USENIX Conference, pages

57–70, June 1985.

Feb 1985 Cfront Release E (first external release); “E” for “Educational”;

available to universities

Oct 1985 Cfront Release 1.0 (first commercial release)

Oct 1985 first edition of C++PL written

B. Stroustrup. The C++ Programming Language.

Addison Wesley, 1986.

Copyright c
2015, 2016

Michael D.
Adams

23C++ Version: 2016-01-18

Timeline
for

C84 to
C++98 (1982–1998) IV

(Cfront Release 1.0 corresponded to language as defined in this

book)

Oct 1985 tutorial paper on C++

B. Stroustrup. A C++ tutorial.

In Proceedings of the ACM annual conference on the range

of computing: mid-80’s perspective, pages 56–64, Oct.

1985.

Jun 1986 Cfront Release 1.1; mainly bug fix release

Aug 1986 first exposition of set of techniques for which C++ was aiming to

provide support (rather than what features are already

implemented and in use)

B. Stroustrup. What is object-oriented programming?

In Proc. of 14th Association of Simula Users Conference,

Stockholm, Sweden, Aug. 1986.

Copyright c
2015, 2016

Michael D.
Adams

24C++ Version: 2016-01-18

Timeline
for

C84 to
C++98

(1982–1998)
V

Sep 1986 first Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA) conference (start of OO hype centered

on Smalltalk)

Nov 1986 first commercial Cfront PC port (Cfront 1.1, Glockenspiel [in

Ireland])

Feb 1987 Cfront Release 1.2; primarily bug fixes but also added:

pointers to members

protected members

Nov 1987 first conference devoted to C++:

USENIX C++ conference (Santa Fe, NM, USA)

Dec 1987 first GNU C++ release (1.13)

Jan 1988 first Oregon Software (a.k.a. TauMetric) C++ release

Jun 1988 first Zortech C++ release

Oct 1988 first presented templates at USENIX C++ conference (Denver,

CO, USA) in paper:

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 25

Timeline
for

C84 to
C++98

(1982–1998) VI

B. Stroustrup. Parameterized types for C++.

In Proc. of USENIX C++ Conference, pages 1–18, Denver,

CO, USA, Oct. 1988.

Oct 1988 first USENIX C++ implementers workshop (Estes Park, CO,

USA)

Jan 1989 first C++ journal “The C++ Report” (from SIGS publications)

started publishing

Jun 1989 Cfront Release 2.0 major cleanup; new features included:

multiple inheritance

type-safe linkage

better resolution of overloaded functions

recursive definition of assignment and initialization

better facilities for user-defined memory management

abstract classes

static member functions

const member functions

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 26

Timeline
for

C84 to
C++98 (1982–1998) VII

overloading of operator ->

protected member functions (first provided in release 1.2)

pointers to members (first provided in release 1.2)

1989 main features of Cfront 2.0 summarized in

B. Stroustrup. The evolution of C++: 1985–1989.

USENIX Computer Systems, 2(3), Summer 1989.

first presented in

B. Stroustrup. The evolution of C++: 1985–1987.

Fe, NM, USA, Nov. 1987.

followed up by

In Proc. of USENIX C++ Conference, pages 1–22, Santa

Nov 1989 paper describing exceptions published

A. Koenig and B. Stroustrup. Exception handling for C++.

In Proc. of “C++ at Work” Conference, Nov. 1989.

Copyright c
2015, 2016

Michael D.
Adams

27C++ Version: 2016-01-18

Timeline
for

C84 to
C++98 (1982–1998) VIII

A. Koenig and B. Stroustrup. Exception handling for C++.

In Proc. of USENIX C++ Conference, Apr. 1990.

Dec 1989 ANSI X3J16 organizational meeting (Washington, DC, USA)

Mar 1990 first ANSI X3J16 technical meeting (Somerset, NJ, USA)

Apr 1990 Cfront Release 2.1; bug fix release to bring Cfront mostly into

line with ARM

May 1990 annotated reference manual (ARM) published

M. A. Ellis and B. Stroustrup. The Annotated C++

Reference Manual.

Addison Wesley, May 1990.

(formed basis for ANSI standardization)

May 1990 first Borland C++ release

Jul 1990 templates accepted (Seattle, WA, USA)

Nov 1990 exceptions accepted (Palo Alto, CA, USA)

Copyright c
2015, 2016

Michael D.
Adams

28C++ Version: 2016-01-18

Timeline
for

C84 to
C++98

(1982–1998)
IX

Jun 1991 second edition of C++PL published

B. Stroustrup. The C++ Programming Language.

Addison Wesley, 2nd edition, June 1991.

Jun 1991 first ISO WG21 meeting (Lund, Sweden)

Sep 1991 Cfront Release 3.0; added templates (as specified in ARM)

Oct 1991 estimated number of C++ users 400,000

Feb 1992 first DEC C++ release (including templates and exceptions)

Mar 1992 run-time type identification (RTTI) described in

B. Stroustrup and D. Lenkov. Run-time type identification for

C++.

The C++ Report, Mar. 1992.

(RTTI in C++ based on this paper)

Mar 1992 first Microsoft C++ release (did not support templates or

exceptions)

Copyright c
2015, 2016

Michael D.
Adams

29C++ Version: 2016-01-18

Timeline
for

C84 to
C++98

(1982–1998)
X

May 1992

Mar 1993

Jul 1993

1993

Aug 1994

Aug 1994

Aug 1996

1997

first IBM C++ release (including templates and exceptions)

RTTI accepted (Portland, OR, USA)

namespaces accepted (Munich, Germany)

further work on Cfront Release 4.0 abandoned after failed

attempt to add exception support

ANSI/ISO Committee Draft registered

Standard Template Library (STL) accepted (Waterloo, ON, CA);

described in

A. Stepanov and M. Lee. The standard template library.

Technical Report HPL-94-34 (R.1), HP Labs, Aug. 1994.

export accepted (Stockholm, Sweden)

third edition of C++PL published

B. Stroustrup. The C++ Programming Language.

Addison Wesley Longman, Reading, MA, USA, 3rd edition,

1997.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 30

Timeline forC84
to
C++98 (1982–1998) XI

Nov 1997 final committee vote on complete standard (Morristown, NJ,

USA)

Jul 1998 Microsoft releases VC++ 6.0, first Microsoft compiler to provide

close-to-complete set of ISO C++

Sep 1998 ISO/IEC 14882:1998 (informally known as C++98) published

ISO/IEC 14882:1998 — programming languages — C++,

Sept. 1998.

1998 Beman Dawes starts Boost (provides peer-reviewed portable

C++ source libraries)

Feb 2000 special edition of C++PL published

B. Stroustrup. The C++ Programming Language.

Addison Wesley, Reading, MA, USA, special edition, Feb.

2000.

Copyright c
2015, 2016

Michael D.
Adams

C++ 31Version: 2016-01-18

Timeline
After C++98 (1998–Present) I

Apr 2001

Oct 2003

2003

Oct 2004

Apr 2005

2005

Apr 2006

motion passed to request new work item: technical report on

libraries (Copenhagen, Denmark); later to become ISO/IEC TR

19768:2007

ISO/IEC 14882:2003 (informally known as C++03) published;

essentially bug fix release; no changes to language from

programmer’s point of view

ISO/IEC 14882:2003 — programming languages — C++,

Oct. 2003.

work on C++0x (now known as C++11) starts

estimated number of C++ users 3,270,000

first votes on features for C++0x (Lillehammer, Norway)

auto, static_assert, and rvalue references accepted in

principle

first full committee (official) votes on features for C++0x (Berlin,

Germany)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 32

Timeline After C++98 (1998–Present) II

Sep 2006 performance technical report (TR 18015) published:

ISO/IEC TR 18015:2006 — information technology —

programming languages, their environments and system

software interfaces — technical report on C++

performance, Sept. 2006.

work spurred by earlier proposal to standardize subset of C++

for embedded systems called Embedded C++ (or just EC++);

EC++ motivated by performance concerns

Apr 2006 decision to move special mathematical functions to separate ISO

standard (Berlin, Germany); deemed too specialized for most

programmers

Nov 2007 ISO/IEC TR 19768:2007 (informally known as C++TR1)

published;

ISO/IEC TR 19768:2007 — information technology —

programming languages — technical report on C++ library

extensions, Nov. 2007.

Copyright c
2015, 2016

Michael D.
Adams

C++ 33Version: 2016-01-18

Timeline
After C++98 (1998–Present)

adoption later in C++

III

specifies series of library extensions to be considered for

C++.

2009 another particularly notable book on C++ published

B. Stroustrup. Programming: Principles and Practice Using

Addison Wesley, Upper Saddle River, NJ, USA, 2009.

Aug 2011 ISO/IEC 14882:2011 (informally known as C++11) ratified

ISO/IEC 14882:2011 — information technology —

2013 fourth edition of C++PL published

programming languages — C++, Sept. 2011.

B. Stroustrup. The C++ Programming Language.

Addison Wesley, 4th edition, 2013.

2014 ISO/IEC 14882:2014 (informally known as C++14) ratified

ISO/IEC 14882:2014 — information technology —

programming languages — C++, 2014.

Copyright c
2015, 2016

Michael D.
Adams

C++ 34Version: 2016-01-18

Additional
Comments

reasons for using C as starting point:

flexibility (can be used for most application areas)

efficiency

availability (C compilers available for most platforms)

portability (source code relatively portable from one platform to another)

main sources for ideas for C++ (aside from C) were Simula, Algol68,

BCPL, Ada, Clu, ML; in particular:

Simula gave classes

Algol68 gave operator overloading, references, ability to declare variables

anywhere in block

BCPL gave // comments

exceptions influenced by ML

templates influenced by generics in Ada and parameterized modules in Clu

Copyright c
2015, 2016

Michael D.
Adams

C++ 35Version: 2016-01-18

C++ User Population

Time Estimated Number of Users

Oct 1979

Oct 1980

Oct 1981

Oct 1982

Oct 1983

Oct 1984

Oct 1985

Oct 1986

Oct 1987

Oct 1988

Oct 1989

Oct 1990

Oct 1991

Oct 2004

1

16

38

85

??+2 (no Cpre count)

??+50 (no Cpre count)

500

2,000

4,000

15,000

50,000

150,000

400,000

over 3,270,000

above numbers are conservative

1979 to 1991: C++ user population doubled approximately every 7.5

months

stable growth thereafter

Copyright c
2015, 2016

Michael D.
Adams

36C++ Version: 2016-01-18

Success of C++

C++ very successful programming language

not luck or solely because based on C

efficient, provides low-level access to hardware, but also supports

abstraction

non-proprietary: in 1989, all rights to language transferred to standards

bodies (first ANSI and later ISO) from AT&T

multi-paradigm language, supporting procedural, object-oriented, generic,

and functional (e.g., lambda functions) programming

does not force particular programming style

reasonably portable

has continued to evolve, incorporating new ideas (e.g., templates,

exceptions, STL)

stable: high degree of compatibility with earlier versions of language

very strong bias towards providing general-purpose facilities rather than

more application-specific ones

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 37

Application Areas

banking and financial (funds transfer, financial modelling, teller machines)

classical systems programming (compilers, operating systems, device

drivers, network layers, editors, database systems)

small business applications (inventory systems)

desktop publishing (document viewers/editors, image editing)

embedded systems (cameras, cell phones, airplanes, medical systems,

appliances)

entertainment (games)

GUI

hardware design and verification

scientific and numeric computation (physics, engineering, simulations,

data analysis, geometry processing)

servers (web servers, billing systems)

telecommunication systems (phones, networking, monitoring, billing,

operations systems)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 38

Section 2.1.1

References

Copyright c
2015, 2016

Michael D.
Adams

39C++ Version: 2016-01-18

Evolution of C++

B. Stroustrup. A history of C++: 1979–1991.

In Proc. of ACM History of Programming Languages Conference, pages

271–298, Mar. 1993

B. Stroustrup. The Design and Evolution of C++.

Addison Wesley, Mar. 1994.

B. Stroustrup. Evolving a language in and for the real world: C++

1991–2006.

In Proc. of the ACM SIGPLAN Conference on History of Programming

Languages, pages 4–1–4–59, 2007.

Cfront software available from Computer History Museum’s Software

Preservation Group http://www.softwarepreservation.org.

(See http://www.softwarepreservation.org/projects/c_plus_plus/cfront).

ISO JTC1/SC22/WG21 web site. http://www.open-std.org/jtc1/sc22/wg21/.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 40

Standards Documents

ISO/IEC 14882:1998 — programming languages — C++, Sept. 1998.

ISO/IEC 14882:2003 — programming languages — C++, Oct. 2003.

ISO/IEC TR 18015:2006 — information technology — programming

languages, their environments and system software interfaces —

technical report on C++ performance, Sept. 2006.

ISO/IEC TR 19768:2007 — information technology — programming

languages — technical report on C++ library extensions, Nov. 2007.

ISO/IEC 14882:2011 — information technology — programming

languages — C++, Sept. 2011.

ISO/IEC 14882:2014 — information technology — programming

languages — C++, 2014.

ISO JTC1/SC22/WG21 web site. http://www.open-std.org/jtc1/sc22/wg21/.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 41

Section 2.2

Getting Started

Copyright c
2015, 2016

Michael D.
Adams

42C++ Version: 2016-01-18

Section 2.2.1

Building Programs: Compiling and Linking

Copyright c
2015, 2016

Michael D.
Adams

43C++ Version: 2016-01-18

hello Program: hello.cpp

1 #include <iostream>

2

3 int main()4 {

5 std::cout << "Hello, world!\n";

6 }

program prints message “Hello, world!” and then exits

starting point for execution of C++ program is function called main; every

C++ program must define function called main

#include preprocessor directive to include complete contents of file

iostream standard header file that defines various types and variables

related to I/O

std::cout is standard output stream (defaults to user’s terminal)

operator << is used for output

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 44

Software Build Process

Source Code

File

(.cpp, .hpp)

Compile

(.o)

Object File

Compile

Compile

.

.

.

.

.

.

(.cpp, .hpp)

Source Code

File

Object File

(.o)

Source Code

File

(.cpp, .hpp)

Object File

(.o)

start with C++ source code files (.cpp, .hpp)

compile: convert source code to object code

object code stored in object file (.o)

Link
Executable

Program

.

.

.

.

.

.

link: combine contents of one or more object files (and possibly some

libraries) to produce executable program

executable program can then be run directly

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 45

GNU
Compiler

Collection
(GCC) C++ Compiler

g++ command provides both compiling and linking functionality

command-line usage:

g++ [options] input file . . .

many command-line options are supported

some particularly useful command-line options listed on next slide

compile C++ source file file.cpp to produce object code file file.o:

g++ -c file.cpp

link object files file1.o, file 2.o, ... to
produce executable file executable:

g++ -o executable file1.o file 2.o ...

web page: http://www.gnu.org/software/gcc

Copyright c
2015, 2016

Michael D.
Adams

46C++ Version: 2016-01-18

Common g++ Command-Line Options

Option Description

-c compile only (i.e., do not link)

-ofile use file file for output

-g include debugging information

-On set optimization level to n (0 almost none; 3 full)

-std=c++14 conform to C++14 standard

-pthread enable concurrency support (via pthreads library)

-Idir specify additional directory dir to search for include files

-Ldir specify additional directory dir to search for libraries

-llib link with library lib

-pedantic-errors strictly enforce compliance with standard

-Wall enable most warning messages

-Wextra enable some extra warning messages not enabled by

-Wall

-Wpedantic warn about deviations from strict standard compliance

-Werror treat all warnings as errors

Copyright c
2015, 2016

Michael D.
Adams

47C++ Version: 2016-01-18

Manually
Building

hello Program

numerous ways in which hello program could be built

often advantageous to compile each source file separately

can compile and link as follows:

g++ -c hello.cpp

1
compile source code file hello.cpp to produce object file hello.o:

2
link object file hello.o to produce executable program hello:

g++ -o hello hello.o

generally, manual building of program is quite tedious, especially when

program consists of multiple source files and additional compiler options

need to be specified

in practice, we use tools to automate build process (e.g., make utility)

Copyright c
2015, 2016

Michael D.
Adams

48C++ Version: 2016-01-18

Section 2.2.2

Make Utility

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 49

Make

make command

controls generation of executables and/or other non-source files from

program’s source files

extremely popular tool for automating build process

available on many platforms (e.g., Unix, Microsoft Windows, Mac OS X);

used extensively on Unix systems

very flexible

can handle building multiple programs consisting of hundreds of source

files or single program consisting of only one source file

can be used to build almost anything (i.e., need not be a program)

for example,
all

materials for this course typeset using LATEX (e.g.,

coursepack, slides, handouts, exams), and make utility used to compile

LATEX source code into PDF documents

one of most popular implementations of make is GNU Make

GNU Make web page: http://www.gnu.org/software/make

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 50

make Command

target is something that can be built, typically (but not necessarily) file

such as executable file or object file

make command driven by data file called makefile

makefile usually named Makefile or makefile

command-line usage:

make [options] [targets]

targets: zero
or

more targets to
be

built

options: zero or
more

options

by default, looks for makefile called makefile and then Makefile

if no targets are specified, will build first target specified in makefile

only builds files that are out of date

most common command-line options include:

-n show commands that would be executed but do not actu

ally execute them

-f makefile use
makefile makefile

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 51

Makefiles

comment starts at hash character (i.e., “#”) and continues until end of line;

example:

This comment continues until the end of the line.

supports variables

some important variables used by built-in rules:

Name Description

CXX C++ compiler command

CXXFLAGS C++ compiler options

LDFLAGS linker options

to assign value to variable, use equal sign; example:

CXX = g++

to substitute value of variable, use dollar sign followed by variable name in

parentheses; example:

$(CXX)

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18 52C++

Makefiles (Continued 1)

makefile specifies targets and rules for building targets

each rule in makefile has following form:

targets : prerequisites

commands

...

targets: list of one or more targets

targets)

prerequisites

indentation shown above must be with tab character and not spaces

prerequisites: files on which targets depend (i.e., files used to produce

commands: actions that must be carried out to produce target from its

Copyright c
2015, 2016

Michael D.
Adams

53C++ Version: 2016-01-18

Makefiles (Continued 2)

normally, each target associated with file of same name (and building

target will create this file)

phony target: target that is not associated with any file

to identify target as phony make it prerequisite of special target called

“.PHONY”; example (specify all as phony target):

.PHONY: all

some special built-in variables that can be used in rules:

Name Description

$@ target

$< name of first prerequisite

$ˆ names of all of prerequisites separated by spaces

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 54

Makefile for hello Program

9

10

14

15

18

19

22

2324

25

26

27

1
CXX = g++ # The C++ compiler command.

2
CXXFLAGS = -g -O # The C++ compiler options.

3 LDFLAGS = # The linker options (if any).

4

5 # The all target builds all of the programs handled by

6 # the makefile.

7 # This target has the dependency chain:

8 # all -> hello -> hello.o -> hello.cppall: hello

11 # The clean target removes all of the executable files

12 # and object files produced by the build process.

13 clean:

rm -f hello *.o

16 # The hello target builds the hello executable.

17 hello: hello.o

$(CXX) $(CXXFLAGS) -o $@ $ˆ $(LDFLAGS)

20 # Indicate that the all and clean targets do not

21 # correspond to actual files.

.PHONY: all clean

The following rule is effectively built into make and

therefore need not be explicitly specified:

hello.o: hello.cpp

$(CXX) $(CXXFLAGS) -c $<

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 55

Commentary on
Makefile for hello Program

all target: builds all of the programs handled by the makefile (e.g.,

hello)

clean target: removes all of the executable files and object files produced

by build process (e.g., hello, hello.o)

although all and clean have no special meaning to make, very common

practice to provide targets with these particular names in all makefiles

hello target: compiles and links the hello program

chain of dependencies for all target:

all → hello → hello.o → hello.cpp

all and clean examples of phony targets

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 56

Section 2.2.3

Debugging Tools

Copyright c
2015, 2016

Michael D.
Adams

57C++ Version: 2016-01-18

Source-Level Debuggers

unfortunately, software does not always work as intended due to errors in

code (i.e., bugs)

how does one go about fixing bugs in time-efficient manner?

source-level debugger is essential tool

single stepping: step through execution of code, one source-code line at a

time

breakpoints: pause execution at particular points in code

watchpoints: pause execution when the value of variable is changed

print values of variables

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 58

GNU Debugger
(GDB)

GNU Debugger (GDB) is powerful source-level debugger

home page: http://www.gnu.org/software/gdb

available on most platforms (e.g., Unix, Microsoft Windows)

most popular source-level debugger on Unix systems

allows one to see what is happening inside program as it executes or what

a program was doing at the moment it crashed

has all of the standard functionality of a source-level debugger (e.g.,

breakpoints, watchpoints, single-stepping)

gdb command

command-line usage:

gdb [options] executable

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 59

gdb Commands

help

Print help information.

quit

Exit debugger.

run [arglist]

Start the program
(with arglist if

specified).

print expr

Display the value of the expression expr.

bt

Display a stack backtrace.

list

Type the source code lines in the vicinity of where the program is currently

stopped.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 60

gdb Commands (Continued)

break function

watch expr

Set a breakpoint at
the

function function.

Set a watchpoint for the expression expr.

c

next

Continue running the program (e.g., after stopping at a breakpoint).

Execute the next program line, stepping over any function calls in the line.

step

Execute the next program line, stepping into any function calls in the line.

Copyright c
2015, 2016

Michael D.
Adams

C++ 61Version: 2016-01-18

GNU Data Display Debugger (DDD)

graphical front-end to command-line debuggers such as GDB

has some fancy graphical data display functionality

all gdb commands available in text window, but can use graphical

interface to enter commands as well

home page: http://www.gnu.org/software/ddd

ddd command

Copyright c
2015, 2016

Michael D.
Adams

62C++ Version: 2016-01-18

Valgrind

can detect many memory management and threading bugs

can profile programs in detail

home page: http://www.valgrind.orgvalgrind command

valkyrie command (GUI for Memcheck and Helgrind tools in Valgrind)

Copyright c
2015, 2016

Michael D.
Adams

63C++ Version: 2016-01-18

Valgrind References I

1 P. Floyd. Valgrind part 1 — introduction.

Overload, 108:14–15, Apr. 2012.

2 P. Floyd. Valgrind part 2 — basic memcheck.

Overload, 109:24–28, June 2012.

3 P. Floyd. Valgrind part 3 — advanced memcheck.

Overload, 110:4–7, Aug. 2012.

4 P. Floyd. Valgrind part 4 — cachegrind and callgrind.

Overload, 111:4–7, Oct. 2012.

5 P. Floyd. Valgrind part 5 — massif.

Overload, 112:20–24, Dec. 2012.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 64

Section 2.3

C++ Basics

Copyright c
2015, 2016

Michael D.
Adams

65C++ Version: 2016-01-18

The
C++ Programming

Language

created by Bjarne Stroustrup of Bell Labs

originally known as C with Classes; renamed as C++ in 1983

most recent specification of language in ISO/IEC 14882:2014 (informally

known as “C++14”)

next version of standard expected in 2017

procedural

loosely speaking is superset of C

directly supports object-oriented and generic programming

maintains efficiency of C

application domains: systems software, application software, device

drivers, embedded software, high-performance server and client

applications, entertainment software such as video games, native code for

Android applications

greatly influenced development of C# and Java

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 66

Comments

two styles of comments provided

comment starts with // and proceeds to end of line

comment starts with /* and proceeds to first */

// This is an example of a comment.

/* This is an example of a comment that

spans

/* This is another example of a comment.

multiple lines.

*/

*/

comments of /* ··· */ style do not nest

/*

/* This sentence is part of a comment.
*/

This sentence is not part of any comment and

will probably cause a compile error.

*/

Copyright c
2015, 2016

Michael D.
Adams

67C++ Version: 2016-01-18

Identifiers

identifiers used to name entities such as: types, objects (i.e., variables),

and functions

valid identifier is sequence of one or more letters, digits, and underscore

characters that does not begin with a digit

identifiers that begin with underscore (in many cases) or contain double

underscores are reserved for use by C++ implementation and should be

avoided

examples of valid identifiers:

event_counter

eventCounter

sqrt_2

f_o_o_b_a_r_4_2

identifiers are case sensitive (e.g., counter and cOuNtEr are distinct

identifiers)

identifiers cannot be any of reserved keywords (see next slide)

scope of
identifier is context

in
which identifier is valid (e.g., block,

function, global)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18
68

Reserved Keywords

alignas

alignof

and

and_eq

asm

auto

bitand

bitor

bool

break

case

catch

char

char16_tchar32_t

class

compl

const

constexpr

const_cast

continue

decltype

∗Note: context sensitive

default

delete

do

double

dynamic_cast

else

enum

explicit

export

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

noexcept

not

not_eqnullptr

operator

or

or_eq

private

protected

public

register

reinterpret_cast

return

short

signed

sizeof

static

static_assert

static_cast

struct

switch

template

this

thread_local

throw

true

try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while

xor

xor_eq

override∗

final∗

Copyright c
2015, 2016

Michael D.
Adams

69C++ Version: 2016-01-18

Section 2.3.1

Objects, Types, and Values

Copyright c
2015, 2016

Michael D.
Adams

70C++ Version: 2016-01-18

Fundamental Types

boolean type: bool

character types:

char (may be signed or unsigned)

signed char

unsigned char

char16_t

char32_t

wchar_t

char is distinct type
from signed char and unsigned char

standard signed integer types:

signed char

signed short int

signed int

signed long int

signed long long int

standard unsigned integer types:

unsigned char

unsigned short int

unsigned int

unsigned long int

unsigned long long int

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 71

Fundamental Types (Continued)

“int” may be omitted from names of (non-character) integer types (e.g.,

“unsigned” equivalent to “unsigned int” and “signed” equivalent

to “signed int”)

“signed” may be omitted from names of signed integer types, excluding

signed char (e.g., “int” equivalent to “signed int”)

boolean, character, and (signed and unsigned) integer types collectively

called integral types

floating-point types:

float

double

long double

void (i.e., incomplete/valueless) type: void

null pointer type: std::nullptr_t (defined in header file cstddef)

Copyright c
2015, 2016

Michael D.
Adams

C++ 72Version: 2016-01-18

Literals

literal (a.k.a. literal constant) is value written exactly as it is meant to be

interpreted

examples of literals:

"Hello, world"

"Bjarne"

’a’

’A’

123

123U

1’000’000’000

3.1415

1.0L

1.23456789e-10

Copyright c
2015, 2016

Michael D.
Adams

73C++ Version: 2016-01-18

Character Literals

character literal consists of optional prefix followed by one or more

characters enclosed in single quotes

type of character literal determined by prefix (or lack thereof) as follows:

Prefix Literal Type

None ordinary normally char (in special cases int)

u8 [since C++17] UTF-8 char

u UCS-2 char16_t

U UCS-4 char32_t

L wide wchar_t

special characters can be represented by escape sequence:

Character Escape Sequence

newline (LF) \n

horizontal tab (HT) \t

vertical tab (VT) \v

backspace (BS) \b

carriage return (CR) \r

form feed (FF) \f

alert (BEL) \a

examples of character literals:

’a’ ’1’ ’!’ ’\n’ u’a’ U’a’ L’a’

Character Escape Sequence

backslash (\) \\

question mark (?) \?

single quote (’) \’

double quote (") \"

octal number ooo \ooo

hex number hhh \xhhh

u8’a’

Copyright c
2015, 2016

Michael D. 74Adams C++ Version: 2016-01-18

Character Literals (Continued)

decimal digit characters guaranteed to be consecutive in value (e.g., ’1’

must equal ’0’ + 1)

’a’ + 1)

in case of ordinary character literals, alphabetic characters are not

guaranteed to be consecutive in value (e.g., ’b’ is not necessarily

Copyright c
2015, 2016

Michael D.
Adams

75C++ Version: 2016-01-18

String
Literals

string literal consists of optional prefix followed by zero or more characters

enclosed in double quotes

string literal has character array type

type of string literal determined by prefix (or lack thereof) as follows:

Prefix Literal Type

None narrow const char[]

u8 UTF-8 const char[]

u UTF-16 const char16_t[]U UTF-32 const char32_t[]L wide const wchar_t[]

examples of string literals:

"Hello, World!\n"

"123"

"ABCDEFG"

adjacent string literals are concatenated (e.g., "Hel" "lo" equivalent to

"Hello")

string literals implicitly terminated by null character (i.e., ’\0’)

so, for example, "Hi" means ’H’ followed by ’i’ followed by ’\0’

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 76

Integer
Literals

can be specified in decimal, binary, hexadecimal, and octal

number base indicated by prefix (or lack thereof) as follows:

various suffixes can be specified to control type of literal:

Prefix Number Base

None decimal

Leading 0 octal

0b or 0B binary

0x or 0X hexadecimal

u or U

l or L

both u or U and l or L

ll or LL

both u or U and ll or LL

can use single quote as digit separator (e.g., 1’000’000)

examples of integer literals:

42

1’000’000’000’000ULL

0xdeadU

integer literal always nonnegative; so, for example, -1 is integer literal 1

with negation operation applied

Copyright c
2015, 2016

Michael D.
Adams

77C++ Version: 2016-01-18

Integer Literals (Continued)

Suffix Decimal Literal Non-Decimal Literal

None int int

long int unsigned int

long long int long int

unsigned long int

long long int

unsigned long long int

u or U unsigned int unsigned int

unsigned long int unsigned long int

unsigned long long int unsigned long long int

l or L long int long int

long long int unsigned long int

long long int

unsigned long long int

Both u or U unsigned long int unsigned long int

and l or L unsigned long long int unsigned long long int

ll or LL long long int long long int

unsigned long long int

Both u or U unsigned long long int unsigned long long int

and ll or LL

Copyright c
2015, 2016

Michael D.
Adams

C++ 78Version: 2016-01-18

Floating-Point Literals

Suffix Type

None

type of literal indicated by suffix (or lack thereof) as follows:

double

f or F float

l or L long double

1.414

examples of double literals:

1.25e-8

examples of float literals:

1.414f

1.25e-8f

examples
of long double literals:

1.5L

1.25e-20L

1.0 with negation operator applied

floating-point literals always nonnegative; so, for example, -1.0 is literal

Copyright c
2015, 2016

Michael D.
Adams

79C++ Version: 2016-01-18

Boolean
and

Pointer Literals

boolean literals:

true

false

pointer literal:

nullptr

Copyright c
2015, 2016

Michael D.
Adams

80C++ Version: 2016-01-18

Declarations
and

Definitions

declaration introduces identifier for type, object (i.e., variable), or function

(without necessarily providing full information about identifier)

in case of object, specifies type (of object)

in case of function, specifies number of parameters, type of each

parameter, and type of return value (if not automatically deduced)

each identifier must be declared before it can be used (i.e., referenced)

definition provides full information about identifier and causes entity

associated with identifier (if any) to be created

in case of type, provides full details about type

in case of object, causes storage to be allocated for object and object to be

created

in case of function, provides code for function body

in case of objects, in most (but not all) contexts, declaring object also

defines it

can declare identifier multiple times but can define only once

above terminology often abused, with “declaration” and “definition” being

used interchangeably

Copyright c
2015, 2016

Michael D.
Adams

C++ 81Version: 2016-01-18

Examples of Declarations and Definitions

int count; // declare and define count

extern double alpha; // (only) declare alpha

void func() { // declare and define func

int n; // declare and define n

double x = 1.0;

// ...

}

// declare and define x

bool isOdd(int); // declare isOdd

bool isOdd(int x);

bool isOdd(int x)

return x

// declare isOdd (x ignored)

% 2;

{ // declare and define isOdd

}

struct Thing; // declare Thing

struct Vector2 { // declare and define Vector2

double x;

double y;

};

Copyright c
2015, 2016

Michael D.
Adams

82C++ Version: 2016-01-18

Variable Declarations and Definitions

variable declaration (a.k.a. object declaration) introduces identifier that

names object and specifies type of object

variable definition (a.k.a. object definition) provides all information

included in variable declaration and also causes object to be created (e.g.,

storage allocated for object)

example:

int count;

// declare and define count

double alpha;

// declare and define alpha

extern double gamma;

// declare (but do not define) gamma

Copyright c
2015, 2016

Michael D.
Adams

83C++ Version: 2016-01-18

Arrays

array is collection of one or more objects of same type that are stored

contiguously in memory

each element in array identified by (unique) integer index, with indices

starting from zero

array denoted by []

example:

double x[10]; // array of 10 doubles

int data[512][512]; // 512 by 512 array of ints

elements of array accessed using subscripting operator []

example:

int x[10];// elements of arrays are x[0], x[1], ..., x[9]

in C++ rarely ever need to use arrays

use std::array or std::vector type instead (as this has many

practical advantages over array)

will revisit std::array and std::vector types later

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 84

Array Example

code:

int a[4] = {1, 2, 3, 4};

assumptions (for some completely fictitious C++ language

implementation):

sizeof(int) is 4

array a starts at address 1000

memory layout:

1

2

3

4

a[0]

a[1]

a[2]

a[3]

NameAddress

1000100810121004

Copyright c
2015, 2016

Michael D.
Adams

85C++ Version: 2016-01-18

Pointers

pointer is object whose value is address in memory where another object

is stored

pointer to object of type T denoted by T*

null pointer is special pointer value that does not refer to any valid

memory location

null pointer value provided by nullptr keyword

accessing object to which pointer refers called dereferencing

dereferencing pointer performed by indirection operator (i.e., “*”)

if p is pointer, *p is object to which pointer refers

if x is object of type T, &x is address of object (which has type T*)

example:

char c;

char* cp = nullptr; // cp is pointer to char

char* cp2 = &c; // cp2 is pointer to char

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18
86

Pointer
Example

code:

int i = 42;

int* p = &i;

assert(*p == 42);

assumptions (for some completely fictitious C++ language

implementation):

sizeof(int) is 4

sizeof(int*) is 4

&i is ((int*)1000)

&p is ((int*)1004)

memory layout:

421000 i

p

NameAddress10001004

Copyright c
2015, 2016

Michael D.
Adams

87C++ Version: 2016-01-18

References

reference is alias (i.e., nickname) for already existing object

two kinds of references:

1 lvalue reference

2 rvalue reference

lvalue reference to object of type T denoted by T&

rvalue reference to object of type T denoted by T&&

initializing reference called reference binding

lvalue and rvalue references differ in their binding properties (i.e., to what

kinds of objects reference can be bound)

in most contexts, lvalue references usually needed

rvalue references used in context of move constructors and move

assignment operators (to be discussed later)

example:

int x;

int& y = x; // y is lvalue reference to int

int&& tmp = 3; // tmp is rvalue reference to int

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 88

References Example

code:

int i = 42;

int& j = i;

assert(j

== 42);implementation):

&i is ((int*)1000)

memory layout:

assumptions (for some completely fictitious C++ language

sizeof(int) is 4

Address

1000 42

Name

i, j

Copyright c
2015, 2016

Michael D.
Adams

89C++ Version: 2016-01-18

Addresses, Pointers, and References

Copyright c
2015, 2016

Michael D.
Adams

90C++ Version: 2016-01-18

References Versus Pointers

references and pointers similar in that both can be used to refer to some

other entity (e.g., object or function)

two key differences between references and pointers:

1 reference must refer to something, while pointer can have null value

(nullptr)

2 references cannot be rebound, while pointers can be changed to point to

different entity

references have cleaner syntax than pointers, since pointers must be

dereferenced upon each use (and dereference operations tend to clutter

code)

use of pointers often implies need for memory management (i.e., memory

allocation, deallocation, etc.), and memory management can introduce

numerous kinds of bugs when done incorrectly

often faced with decision of using pointer or reference in code

generally advisable to prefer use of references over use of pointers unless

compelling reason to do otherwise, such as:

must be able to handle case of referring to nothing

must be able to change entity being referred to

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 91

Unscoped
Enumerations

enumerated type provides way to describe range of values that are

represented by named constants called enumerators

object of enumerated type can take any one of enumerators as value

enumerator values represented by some integral type

enumerator can be assigned specific value (which may be negative)

if enumerator not assigned specific value, value defaults to zero if first

enumerator in enumeration and one greater than value for previous

enumerator otherwise

example:

enum Suit {

Clubs, Diamonds, Hearts, Spades

};

Suit suit = Clubs;

example:

enum Suit {

Clubs = 1, Diamonds = 2, Hearts = 4, Spades = 8

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 92

Scoped
Enumerations

scoped enumeration similar to unscoped enumeration, except

all enumerators are placed in scope of enumeration itself

integral type to used to hold enumerator values can be explicitly specified

conversions involving scoped enumerations are stricter (i.e., more type

safe)

class or struct added after enum keyword to make enumeration

scoped

scope resolution operator (i.e., “::”) used to access enumerators

scoped enumerations should probably be preferred to unscoped ones

example:

enum struct Season {

spring, summer, fall, winter

};

enum struct Suit : unsigned char {

clubs, diamonds, hearts, spades

};

Season season = Season::summer;

Suit suit = Suit::spades;

Copyright c
2015, 2016

Michael D.
Adams

93C++ Version: 2016-01-18

example:

Type Aliases with typedef Keyword

typedef keyword used to create alias for existing type

BigInt i;

typedef char*

typedef long long BigInt;

CharPtr;

CharPtr p;

// i has type long long

// p has type char*

Copyright c
2015, 2016

Michael D.
Adams

94C++ Version: 2016-01-18

Type
Aliases

with using Statement

example:

using BigIntBigInt i;

using statement can be used to create alias for existing type

probably preferable to use using statement over typedef

= long long;

using CharPtr =CharPtr p; char*;

// i has type long long

// p has type char*

Copyright c
2015, 2016

Michael D.
Adams

95C++ Version: 2016-01-18

The extern Keyword

translation unit: basic unit of compilation in C++ (i.e., single source code

file plus all of its directly and indirectly included header files)

extern keyword used to declare object/function in separate translation

unit

example:

extern int evil_global_variable;

// declaration only

// actual definition in another file

Copyright c
2015, 2016

Michael D.
Adams

96C++ Version: 2016-01-18

The
const

Qualifier

const qualifier specifies that object has value that is constant (i.e.,

cannot be changed)

following defines x as int with value 42 that cannot be modified:

const int x = 42;

example:

const int x = 42;

x = 13; // ERROR: x is const

const int& x1 = x; // OK

const int* p1 = &x; // OK

int& x2 = x; // ERROR: x const, x2 not const

int* p2 = &x; // ERROR: x const, *p2 not const

example:

int x = 0;

const int& y = x;

x = 42; // OK

// y also changed to 42 since y refers to x

// y cannot be used to change x, however

// i.e., the following would cause compile error:

// y = 24; // ERROR: y is const

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 97

The
volatile

Qualifier

volatile qualifier used to indicate that object can change due to agent

external to program (e.g., memory-mapped device, signal handler)

compiler cannot optimize away read and write operations on volatile

objects (e.g., repeated reads without intervening writes cannot be

optimized away)

volatile qualifier typically used when object:

corresponds to register of memory-mapped device

may be modified by signal handler (namely, object of type

volatile std::sig_atomic_t)

example:

volatile int x;

volatile unsigned char* deviceStatus;

Copyright c
2015, 2016

Michael D.
Adams

98C++ Version: 2016-01-18

The auto
Keyword

in various contexts, auto keyword can be used as place holder for type

in such contexts, implication is that compiler must deduce type

example:

auto i = 3; // i has type int

auto j = i; // j has type int

auto& k = i; // k has type int&const auto& n = i;

// n has type const int&// x has type double

very useful in generic programming (covered later) when types not always

auto x = 3.14;

easy to determine

can potentially save typing long type names

can lead to more readable code (if well used)

if overused, can lead to bugs (sometimes very subtle ones) and difficult to

read code

Copyright c
2015, 2016

Michael D.
Adams

99C++ Version: 2016-01-18

Section 2.3.2

Operators and Expressions

Copyright c
2015, 2016

Michael D.
Adams

100C++ Version: 2016-01-18

Operators

Arithmetic Operators

Operator Name Syntax

addition a + b

subtraction a - b

unary plus +a

unary minus -a

multiplication a * b

division a / b

modulo (i.e., remainder) a % b

pre-increment ++apost-increment a++

pre-decrement --a

post-decrement a--

Bitwise Operators

Operator Name Syntax

bitwise NOT ˜a

bitwise AND a & b

bitwise OR a | b

bitwise XOR a ˆ b

arithmetic left shift a << b

arithmetic right shift a >> b

Copyright c
2015, 2016

Michael D.
Adams

101C++ Version: 2016-01-18

Operators (Continued 1)

Assignment and

Compound-Assignment Operators

Operator Name Syntax

assignment a = b

addition assignment a += b

subtraction assignment a -= b

multiplication assignment a *= b

division assignment a /= b

modulo assignment a %= b

bitwise AND assignment a &= b

bitwise OR assignment a |= b

bitwise XOR assignment a ˆ= b

arithmetic left shift assignment a <<= b

arithmetic right shift assignment a >>= b

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 102

Operators (Continued
2)

Logical/Relational Operators

Operator Name Syntaxequal a == b

not equal a != bgreater than a > bless than a < bgreater than or equal a >= bless than or equal a <= blogical negation !a

logical AND a && blogical OR a || b

Member and Pointer Operators

Operator Name Syntax

array subscript a[b]

indirection *a

address of &a

member selection a.b

member selection a->b

member selection a.*b

member selection a->*b

Copyright c
2015, 2016

Michael D.
Adams

103C++ Version: 2016-01-18

Operators (Continued 3)

Other Operators

Operator Name Syntax

function call a(...)

comma a, b

ternary conditional a ? b : c

scope resolution a::b

sizeof sizeof(a)parameter-pack sizeof sizeof...(a)alignof alignof(T)allocate storage new T

allocate storage (array) new T[a]

deallocate storage delete a

deallocate storage (array) delete[] a

Copyright c
2015, 2016

Michael D.
Adams

C++ 104Version: 2016-01-18

Operators (Continued
4)

Other Operators (Continued)

dynamic cast

reinterpret cast

throw

noexcept

throw a

noexcept(e)

Operator Name Syntax

type ID typeid(a)

type cast (T) a

const cast const_cast<T>(a)static cast static_cast<T>(a)

dynamic_cast<T>(a)reinterpret_cast<T>(a)

Copyright c
2015, 2016

Michael D.
Adams

105C++ Version: 2016-01-18

Operator Precedence

postfix increment

-- postfix decrement

Precedence Operator Name Associativity

1 :: scope resolution none

2 . member selection (object) left to right

-> member selection (pointer)

[] subscripting

() function call

++

Copyright c
2015, 2016

Michael D.
Adams

106C++ Version: 2016-01-18

Operator Precedence (Continued 1)

Precedence Operator Name Associativity

3 sizeof size of object/type right to left

++ prefix increment

-- prefix decrement

˜ bitwise NOT

! logical NOT

- unary minus

+ unary plus

& address of

* indirection

new allocate storage

new[] allocate storage (array)

delete deallocate storage

delete[] deallocate storage (array)

() cast

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 107

Operator Precedence (Continued 2)

Precedence Operator Name Associativity

4 .* member selection (objects) left to right

->* member selection (pointers)

5 * multiplication left to right

/ division

% modulus

6 + addition left to right

- subtraction

7 << left shift left to right

>> right shift

8 < less than left to right

<= less than or equal

> greater than

>= greater than or equal

9 == equality left to right

!= inequality

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 108

Operator Precedence (Continued 3)

Precedence Operator Name Associativity

10 & bitwise AND left to right

11 ˆ bitwise XOR left to right

12 | bitwise OR left to right

13 && logical AND left to right

14 || logical OR left to right

15 ? : ternary conditional right to left

Copyright c
2015, 2016

Michael D.
Adams

109C++ Version: 2016-01-18

Operator Precedence (Continued 4)

Precedence Operator Name Associativity

16 = assignment right to left

*= multiplication assignment

/= division assignment

%= modulus assignment

+= addition assignment

-= subtraction assignment

<<= left shift assignment

>>= right shift assignment

&= bitwise AND assignment

|= bitwise OR assignment

ˆ= bitwise XOR assignment

17 throw throw exception right to left

18 , comma left to right

Copyright c
2015, 2016

Michael D.
Adams

110C++ Version: 2016-01-18

Alternative Tokens

Alternative Primary

and &&

bitor |

or ||

xor ˆ

compl ˜

bitand &

and_eq &=

or_eq |=

xor_eq ˆ=

not !

not_eq !=

alternative tokens above probably best avoided as they lead to more

verbose code

Copyright c
2015, 2016

Michael D.
Adams

111C++ Version: 2016-01-18

Expressions

An expression is a sequence of operators and operands that specifies a

computation.

An expression has a type and, if the type is not void, a value.

A constant expression is an expression that can be evaluated at compile

time (e.g., 1 + 1).

Example:

Expression Type Value

int x = 0;int y = 0;int* p = &x;double d = 0.0;// Evaluate some// expressions here. x int 0

y = x int& reference to y

x + 1 int 1

x * x + 2 * x int 0

y = x * x int& reference to y

x == 42
bool

false

*p int& reference to x

p == &x bool true

x > 2 * y bool false

std::sin(d) double 0.0

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 112

Operator Precedence/Associativity Example

Expression Fully-Parenthesized Expression

a + b + C ((a + b) + C)

a = b = C (a = (b = C))

C = a + b (C = (a + b))

d = a & & ! b || C (d = ((a & & (! b)) || C))

++*p++ (++ (* (p++)))

a b & C d (a (((b) & C) d))

a [0] ++ + a [1] ++ (((a [0]) ++) + ((a [1]) ++))

a + b + c / d 4 – g (a + (((b. * c) / d) * (-g)))

++p [i] (++ (p [i]))

-->4+p (-- (* (++p)))

a += b += C += d. (a += (b += (C += d)))

Z = a == b 2 ++C : ——d (Z = ((a == b) 2 (++C) (––d)))

Copyright © 2015, 2016 Michael D. Adams Version: 2016-01-18C++

Short-Circuit Evaluation

logical and operator (i.e., &&):

groups left-to-right

result true if both operands are true, and false otherwise

second operand is not evaluated if first operand is false

logical or operator (i.e., ||):

groups left-to-right

result is true if either operand is true, and false otherwise

second operand is not evaluated if first operand is true

example:

int x = 0;

bool b = (x == 0 || ++x == 1);

// b equals true; x equals 0

b = (x != 0 && ++x == 1);

// b equals false; x equals 0

above behavior referred to as short circuit evaluation

Copyright c
2015, 2016

Michael D.
Adams

C++ 114Version: 2016-01-18

The sizeof
Operator

sizeof operator is used to query size of object or object type (i.e.,

amount of storage required)

for object type T, sizeof(T) yields size of T in bytes (e.g.,

sizeof(int), sizeof(int[10]))

for expression e, sizeof e yields size of object required to hold result of

e in bytes (e.g., sizeof(&x) where x is some object)

sizeof(char), sizeof(signed char), and

sizeof(unsigned char) guaranteed to be 1

byte is at least 8 bits (usually exactly 8 bits except on more exotic

platforms)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 115

The alignof Operator

object type can have restriction on address at which object of type can

start called alignment requirement

for given object type T, starting address for objects of type T must be

integer multiple of N bytes, where integer N is called alignment of type

alignment of 1 corresponds to no restriction on alignment (since starting

address of object can be any address in memory)

alignment of 2 restricts starting address of object to be even (i.e., integer

multiple of 2)

for efficiency reasons and due to restrictions imposed by hardware,

alignment of particular type may be greater than 1

alignof operator is used to query alignment of type

for object type T, alignof(T) yields alignment used for objects
of

this

type

alignof(char), alignof(signed char), and

alignof(unsigned char) guaranteed to be 1

fundamental types of size greater than 1 often have alignment greater

than 1

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 116

The constexpr
Qualifier for Variables

constexpr qualifier indicates object has value that is constant

expression (i.e., can be evaluated at compile time)

constexpr implies const (but converse not necessarily true)

following defines x as constant expression with type const int and

value 42:

constexpr int x = 42;

example:

constexpr int x = 42;

int y = 1;

x = 0; // ERROR: x is const

const int& x1 = x; // OK

const int* p1 = &x; // OK

int& x2 = x; // ERROR: x const, x2 not const

int* p2 = &x; // ERROR: x const, *p2 not const

int a1[x]; // OK: x is constexpr

int a2[y]; // ERROR: y is not constexpr

Copyright c
2015, 2016

Michael D.
Adams

C++ 117Version: 2016-01-18

The static_assert Statement

static_assert allows testing of boolean condition at compile time

used to test sanity of code or test validity of assumptions made by code

static_assert has two arguments:

1
boolean constant expression (condition to test)

2
string literal for error message to print if boolean expression not true

as of C++17, second argument is optional

failed static assertion results in compile error

example:

static_assert(sizeof(int) >= 4, "int is too small");static_assert(1 + 1 == 2, "compiler is buggy");

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 118

Section 2.3.3

Control-Flow Constructs: Selection and Looping

Copyright c
2015, 2016

Michael D.
Adams

119C++ Version: 2016-01-18

The
if Statement

allows conditional execution of code

syntax has form:

if (expression)statement

1

else

statement2

if expression expression is true, execute statement statement1; otherwise,

execute statement statement2

else clause can be omitted leading to simpler form:

if (expression)statement

1

conditional execution based on more than one condition can be achieved

using construct like:

if (expression1)

statement1

else if (expression2)

statement2

...

else

statementn

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 120

The if Statement (Continued)

to include multiple statements in branch of if, must group statements

into single statement using brace brackets

if (expression) {

statement1,1statement

1,2statement1,3...

} else {

statement2,1statement

2,2statement2,3...

}

advisable to always include brace brackets even when not necessary, as

this avoids potential bugs caused by forgetting to include brackets later

when more statements added to branch of if

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 121

int x

if

The if
Statement:

Example

(x %

example with else clause:

= someValue;2 == 0)

{

std::cout <<

} else {

std::cout <<

if (x %

"x is even\n";}

example without else clause:

int x = someValue;

2 ==

"x is odd\n";

0) {

std::cout <<

}

example that tests for more than one condition:

int x = someValue;

if (x > 0) {

std::cout <<

else if

"x is divisible by 2\n";

(x < 0) {

std::cout <<

else {

std::cout <<

}

Copyright c
2015, 2016

Michael D.
Adams

"x is positive\n";"x is negative\n";

}

}

"x is zero\n";
C++

Version: 2016-01-18 122

The switch
Statement

allows conditional execution of code based on value of integer expression

syntax has form:

switch (expression) {

:case constexpr1statements1

case constexpr2:

statements2

...
case constexprn:

statementsn

default:statements

}

expression is integer expression; constexpri is constant integer

expression (e.g., 2, 5+3, 3*5-11)

if
expression expression equals constexpri, jump to beginning

of

statements statementsi;

if expression expr does not equal constexpri for any i, jump to beginning

of statements statements;

then, continue executing statements until break statement is

encountered

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 123

The switch
Statement: Example

int x = someValue;

switch (x) {

case 0:

// Note that there is no break here.

case 1:

std::cout <<

break;

case 2:

"x is 0 or 1\n";

std::cout << "x is 2\n";

break;

default:

std::cout << "x is not 0, 1, or 2\n";

break;

}

Copyright c
2015, 2016

Michael D.
Adams

124C++ Version: 2016-01-18

The while Statement

looping construct

syntax has form:

while (expression)

statement

if expression expression is true, statement statement is executed; this

process repeats until expression expression becomes false

to allow multiple statements to be executed in loop body, must group

multiple statements into single statement with brace brackets

while (expression) {

statement1
statement2
statement3

...

}

advisable to always use brace brackets, even when loop body consists of

only one statement

Copyright c
2015, 2016

Michael D.
Adams

125C++ Version: 2016-01-18

The while Statement: Example

// print hello 10 times

int n = 10;while (n > 0) {

std::cout << "hello\n";

--n;

}

// loop forever, printing hello

while (true) {

std::cout << "hello\n";

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 126

The for Statement

looping construct

has following syntax:

for (statement1; expression; statement2)

statement3

first, execute statement statement1; then, while expression expression is

true, execute statement statement3 followed by statement statement2

statement1 and statement2 may be omitted; expression treated as true if

omitted

to
include multiple statements

in
loop body,

must group multiple

statements into single statement using brace brackets; advisable to always

use brace brackets, even when loop body consists of only one statement:

for (statement1; expression; statement2) {

statement3,1statement

3,2

...

}

any objects declared in statement1 go out of scope as soon as for loop

ends

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 127

The for
Statement (Continued)

consider for loop:

for (statement1; expression; statement2)

statement3

above for loop can be equivalently expressed in terms of while loop

as follows (except for behavior of continue statement, yet to be

discussed):

{

statement1;

while (expression) {

statement3

statement2;

}

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 128

The for Statement: Example

example with single statement in loop body:

for i < 10; ++i)

std::cout << i <<

example with multiple statements in loop body:

0; ’\n’;

int values[10];// ...

int sum = 0;

for (int i = 0; i < 10;

(values[i]

++i) {

// Stop if value is negative.

if

sum +=

(int i =

< 0) {

break;

}

values[i];

}

example with error in assumption about scoping rules:

for

++i; // ERROR:

0; i < 10; ++i) {

std::cout << i << ’\n’;

}

i no longer exists

// Print the integers from 0 to 9 inclusive.

(int i =

Copyright c
2015, 2016

Michael D.
Adams

129C++ Version: 2016-01-18

Range-Based for Statement

variant of for loop for iterating over elements in range

example:

int array[4] = {1, 2, 3, 4};// Triple the value of each element in the array.

for (int& x : array) {

x *= 3;

}

range-based for loop nice in that it clearly expresses programmer intent

(i.e., iterate over each element of collection)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 130

The
do

Statement

looping construct

has following general syntax:

do

statement

while (expression);

statement statement executed;

then, expression expression evaluated;

if
expression expression is true, entire process repeats from beginning

to execute multiple statements in body of loop, must group multiple

statements into single statement using brace brackets

do {
statement1

statement2

...

} while (expression);

advisable to always use brace brackets, even when loop body consists of

only one statement

Copyright c
2015, 2016

Michael D.
Adams 131C++ Version: 2016-01-18

The do
Statement:

Example

example with single statement in loop body:

// delay by looping 10000 times

int n = 0;

do

++n;

while (n < 10000);

example with multiple statements in loop body:

// print integers from 0 to 9 inclusive

int n = 0;

do {

std::cout << n << ’\n’;++n;

} while (n < 10);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 132

The break Statement

break statement causes enclosing loop or switch to be terminated

immediately

example:

// Read integers from standard input until an

// error or end-of-file is encountered or a

// negative integer is read.

int x;

while (std::cin >> x) {

if (x < 0) {

break;

}

std::cout << x << ’\n’;

}

Copyright c
2015, 2016

Michael D.
Adams

133C++ Version: 2016-01-18

The
continue Statement

continue statement causes next iteration of enclosing loop to be

started immediately

example:

int values[10];...

// Print the nonzero elements of the array.

for (int i = 0; i < 10; ++i) {

if (values[i] == 0) {

// Skip over zero elements.

continue;

}

// Print the (nonzero) element.

std::cout << values[i] << ’\n’;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 134

The goto Statement

goto statement transfers control to another statement specified by label

should generally try to avoid use of goto statement

well written code rarely
has

legitimate use for goto statement

example:

int i = 0;

loop: // label for goto statement

do {

if (i == 3) {

++i;

goto loop;}

std::cout << i << ’\n’;++i;

} while (i < 10);

some restrictions on use of goto (e.g., cannot jump over initialization in

same block as goto)

goto skip; // ERROR

int i = 0;

skip:

++i;

Copyright c
2015, 2016

Michael D.
Adams

135C++ Version: 2016-01-18

Section 2.3.4

Functions

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 136

Function
Parameters, Arguments,

and
Return Values

argument (a.k.a. actual parameter): argument is value supplied to

function by caller; appears in parentheses of function-call operator

parameter (a.k.a. formal parameter): parameter
is

object/reference

declared as part of function that acquires value on entry to function;

appears in function definition/declaration

although abuse of terminology, parameter and argument often used

interchangeably

return value: result passed from function back to caller

int square(int i) { // i is parameter

return i * i; // return value is i * i

}

void compute() {

int i = 3;

int j = square(i); // i is argument

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 137

Function Declarations and Definitions

function declaration introduces identifier that names function and

specifies following properties of function:

number of parameters

type of each parameter

type of return value (if not automatically deduced)

example:

bool isOdd(int); // declare isOdd

bool isOdd(int x); // declare isOdd (x ignored)

function definition provides all information included in function

declaration as well as code for body of function

example:

bool isOdd(int x) { // declare and define isOdd

return x % 2;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 138

Basic
Syntax

(Leading Return Type)

most basic syntax for function declarations and definitions places return

type at start (i.e., leading return-type syntax)

basic syntax for function declaration:

return type function name(parameter declarations);

examples of function declarations:

int min(int, int);double square(double);

basic syntax for function definition:

statements

}

return type function name(parameter declarations)

{

examples of function definitions:

int min(int x, int y)

double square(double x)

{return x < y ? x : y;}

{return x * x;}

Copyright c
2015, 2016

Michael D.
Adams

139C++ Version: 2016-01-18

Trailing Return-Type Syntax

with trailing return-type syntax, return type comes after parameter

declarations and auto used as placeholder for where return type would

normally be placed

trailing return-type syntax for function declaration:

auto function name(parameter declarations) -> return type;

examples of function declarations:

auto min(int, int) -> int;

auto square(double) -> double;

trailing return-type syntax for function definition:

auto function name(parameter declarations) -> return type

{

examples of function definitions:

statements

}

auto min(int x, int y) -> int

{return x < y ? x : y;}

auto square(double x) -> double {return x * x;}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 140

The
return

Statement

return statement used to exit function, passing specified return value (if

any) back to caller

code in function executes until return statement is reached or execution

falls offend of function

if function return type is not void, return statement takes single

parameter indicating value to be returned

if function return type is void, function does not return any value and

return statement takes no parameter

falling off end of function equivalent to executing return statement with

no value

example:

double unit_step(double x) {

if (x >= 0.0) {

return 1.0; // exit with return value 1.0

}

return 0.0; // exit with return value 0.0

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 141

Automatic Return-Type Deduction

with both leading and trailing return-type syntax, can specify return type

as auto

in this case, return type of function will be automatically deduced

if function definition has no return statement, return type deduced to be

void

otherwise, return type deduced to match type in expression of return

statement or, if return statement has no expression, as void

if multiple return statements, must use same type for all return

expressions

when return-type deduction used, function definition must be visible in

order to call function (since return type cannot be determined otherwise)

example:

auto square(double x) {

return x * x;

// x * x has type double

// deduced return type is double

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 142

The main Function

entry point to program is always function called main

has return type of int

can be declared to take either no arguments or two arguments as follows

(although other possibilities may also be supported by implementation):

int main();int main(int argc, char* argv[]);

two-argument variant allows arbitrary number of C-style strings to be

passed to program from environment in which program run

argc: number of C-style strings provided to program

argv: array of pointers to C-style strings

argv[0] is name by which program invoked

argv[argc] is guaranteed to be 0 (i.e., null pointer)

argv[1], argv[2], ..., argv[argc - 1] typically correspond to

command line options

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 143

The main Function (Continued)

suppose that following command line given to shell:

program one two three

main function would be invoked as follows:

int argc = 4;

char* argv[] = {

"program", "one",

};

main(argc, argv);

"two", "three", 0

return value of main typically passed back to operating system

can also use function void exit(int) to terminate program, passing

integer return value back to operating system

return statement in main is optional

if control reaches end of main without encountering return statement,

effect is that of executing “return 0;”

Copyright c
2015, 2016

Michael D.
Adams

144C++ Version: 2016-01-18

Lifetime

lifetime of object is period of time in which object exists (e.g., block,

function, global)

int x;

void wasteTime()

{

int j = 10000;

while (j > 0) {

--j;

}

for (int i = 0; i < 10000; ++i) {

}

}

in above example: x global scope and lifetime; j function scope and

lifetime; i block scope and lifetime

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 145

Parameter Passing

function parameter can be passed by value or by reference

pass by value: function given copy
of

object
from

caller

pass by reference: function given reference to object from caller

to pass parameter by reference, use reference type for parameter

example:

void increment(int& x)

// x is passed by reference

{

++x;

}

double square(double x)

// x is passed by value

{

return x * x;

}

Copyright c
2015, 2016

Michael D.
Adams

146C++ Version: 2016-01-18

Pass-By-Value Versus Pass-By-Reference

if object being passed to function is expensive to copy (e.g., a very large

data type), always faster to pass by reference

if
function needs

to change value of object in caller, must pass by

reference

example:

void increment0(int x) {

++x; // Increment x by one.

}

void increment(int& x) {

++x; // Increment x by one.

}

void func() {

int i = 0;

increment0(i); // i is passed by value

// i still equals 0 (i was not incremented)

increment(i); // i is passed by reference

// i equals 1 (i was incremented)

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 147

Pass
By

Value

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 148

Pass By Reference

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 149

Pass-By-Reference Example

above code is incorrect

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 150

Pass-By-Reference Example (Continued)

code will not compile

Copyright c
2015, 2016

Michael D.
Adams

151C++ Version: 2016-01-18

Inline Functions

inline function: function for which compiler copies code from function

definition directly into code of calling function rather than creating

separate set of instructions in memory

since code copied directly into calling function, no need to transfer control

to separate piece of code and back again to caller, eliminating

performance overhead of function call

can request function be made inline by including inline qualifier along

with function return type

inline typically used for very short functions (where overhead of calling

function is large relative to cost of executing code within function itself)

inline function definition must be visible at point of use

example:

return x %

inline bool isEven(int x) {

2 == 0;

}

Copyright c
2015, 2016

Michael D.
Adams

152C++ Version: 2016-01-18

Inlining of a Function

inlining of isEven function transforms code fragment 1 into code

fragment 2

Code fragment 1:

inline bool isEven(int x) {

return x % 2 == 0;

}

void myFunction() {

int i = 3;

bool result = isEven(i);

}

Code fragment 2:

void myFunction() {

int i = 3;

bool result = (i % 2 == 0);

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 153

The constexpr
Qualifier for Functions

constexpr qualifier indicates return value of function is constant

expression (i.e., can be evaluated at compile time) provided that all

arguments to function are constant expressions

constexpr function required to be evaluated at compile time if all

arguments are constant expressions and return value used in constant

expression

constexpr functions are implicitly inline

constexpr function very restricted in what it can do (e.g., no external state,

can only call constexpr functions)

example:

constexpr int factorial(int n) {

return n >= 2 ? (n * factorial(n - 1)) : 1;

}

int u[factorial(5)];// OK: factorial(5) is constant expression

int x = 5;

int v[factorial(x)];// ERROR: factorial(x) is not constant

// expression

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 154

9

10

11
12

13

Constexpr Function Example: square

1 #include <iostream>

2

3
constexpr double square(double x) {

4 return x * x;

5 }

6

7 int main() {

8
constexpr double a = square(2.0);// must be computed at compile time

double b = square(0.5);// might be computed at compile time

14

15

16

17

}

18
19

2021

22 }

double t;

if (!(std::cin >> t)) {

return 1;

const double c = square(t);// must be computed at run time

std::cout << a << ’ ’ << b << ’ ’ << c << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 155

9
10

}

1112

13
14

15

16
17

18

22

23

24

25 }

Constexpr Function Example: power_int (Recursive)

1 #include <iostream>

2

3
constexpr double power_int_helper(double x, int n) {

4
return (n > 0) ? x * power_int_helper(x, n - 1) : 1;

5 }

6

7
constexpr double power_int(double x, int n) {

8
return (n < 0) ? power_int_helper(1.0 / x, -n)

power_int_helper(x, n);

:

int main() {

constexpr double a = power_int(0.5, 8);// must be computed at compile time

double b = power_int(0.5, 8);// might be computed at compile time

19 double x;

20 if (!(std::cin >> x)) {return 1;}

21
const double c = power_int(x, 2);

// must be computed at run time

std::cout << a << ’ ’ << b << ’ ’ << c << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 156

Constexpr Function Example: power_int (Iterative)

#include <iostream>1

2

3
constexpr double power_int(double x, int n) {

4 double result = 1.0;

5 if (n < 0) {

6 x = 1.0 / x;

n = -n;7

8 }

9 while (--n >= 0) {

10 result *= x;

11 }

12 return result;

13 }

14

15 int main() {

16
constexpr double a = power_int(0.5, 8);

17

// must be computed at compile time

18

19 double b = power_int(0.5, 8);
20

// might be computed at compile time

21

22 double x;

23 if (!(std::cin >> x)) {return 1;}

24
const double c = power_int(x, 2);

25

// must be computed at run time

26

27 std::cout << a << ’ ’ << b << ’ ’ << c << ’\n’;28 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 157

Compile-Time Versus Run-Time Computation

constexpr variables and constexpr functions provide mechanism for

moving computation from run time to compile time

benefits of compile-time computation include:

1
no execution-time cost at run-time

2
can reduce code size since code used only for compile-time computation

does not need to be included in executable

3
can find errors at compile-time and link-time instead of at run time

4
no synchronization concerns

when floating point is involved, compile-time and run-time computations

can yield different results, due to differences in such things as

rounding mode in effect

processor architecture used for computation (when cross compiling)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 158

Function
Overloading

function overloading: multiple functions can have same name as long as

they differ in number/type of their arguments

example:

void print(int x) {

std::cout << "int has value " << x << ’\n’;}

void print(double x) {

std::cout << "double has value " << x << ’\n’;

}

void demo() {

int i = 5;

double d = 1.414;

print(i); // calls print(int)print(d); // calls print(double)

print(42); // calls print(int)print(3.14);

// calls print(double)

}

Copyright c
2015, 2016

Michael D.
Adams

159C++ Version: 2016-01-18

Default Arguments

can specify default values for arguments to functions

example:

// Compute log base b of x.

double logarithm(double x, double b) {

return std::log(x) / std::log(b);

}

// Declaration of logarithm with a default argument.

double logarithm(double, double = 10.0);

void demo() {

double x =

logarithm(100.0); // calls logarithm(100.0, 10.0)

double y =

logarithm(4.0, 2.0); // calls logarithm(4.0, 2.0)

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 160

Argument Matching

call of given function name chooses function that best matches actual

arguments

consider all functions in scope for which set of conversions exists so

function could possibly be called

best match is intersection of sets of functions that best match on each

argument

matches attempted in following order:

1 exact match with zero or more trivial conversions (e.g., T to T&, T& to T,

adding const and/or volatile); of these, those that do not add const

and/or volatile to pointer/reference better than those that do

2 match with promotions (e.g., int to long, float to double)

3 match with standard conversions (e.g., float to int, double to int)

4 match with user-defined conversions

5 match with ellipsis

if set of best matches contains exactly one element, this element chosen

as function to call

if set of best matches is either empty or contains more than one element,

function call is invalid (since either no matches found or multiple

equally-good matches found)Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18

161

Argument
Matching: Example

int max(int, int);double max(double, double);

int i, j, k;

double a, b, c;

// ...

k = max(i, j);// best match on first argument: max(int, int)

// best match on second argument: max(int, int)

// best match: max(int, int)

// OK: calls max(int, int)

c = max(a, b);// best match on first argument: max(double, double)

// best match on second argument: max(double, double)

// best match: max(double, double)

// OK: calls max(double, double)

c = max(i, b);// best match on first argument: max(int, int)

// best match on second argument: max(double, double)

// best match: empty set

// ERROR: ambiguous function call

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 162

The assert Macro

assert macro allows testing of boolean condition at run time

typically used to test sanity of code (e.g., test preconditions,

postconditions, or other invariants) or test validity of assumptions made by

code

defined in header file cassert

macro takes single argument: boolean expression

if assertion fails, program is terminated by calling std::abort

if NDEBUG preprocessor symbol is defined at time cassert header file

included, all assertions are disabled (i.e., not checked)

example:

#include <cassert>

double sqrt(double x) {

assert(x >= 0);

// ...

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 163

Section 2.3.5

Input/Output (I/O)

Copyright c
2015, 2016

Michael D.
Adams

164C++ Version: 2016-01-18

Basic I/O

relevant declarations and such in header file iostream

std::istream: stream from which characters/data can be read (i.e.,

input stream)

std::ostream: stream to which characters/data can be written (i.e.,

output stream)

std::istream std::cin standard input stream

std::ostream std::cout standard output stream

std::ostream std::cerr standard error stream

in most environments, above three streams refer to user’s terminal by

default

output operator (inserter) <<

input operator (extractor) >>

stream can be used as bool expression; converts to true if stream has

not encountered any errors and false otherwise (e.g., if invalid data

read or I/O error occurred)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 165

example:

std::cout <<

Basic I/O:
Example

int x;

std::cin >> x;

if (std::cin) {

std::cout

else {

std::cerr <<

"End-of-file reached or I/O error" <<

"Enter an integer: ";

x <<

<< "The integer entered was

’\n’;

}

"

<<

’\n’;

}

Copyright c
2015, 2016

Michael D.
Adams

166C++ Version: 2016-01-18

I/O Manipulators

manipulators provide way to control formatting of data values written to

streams as well as parsing of data values read from streams

declarations related information for manipulators can be found in header

files: ios, iomanip, istream, and ostream

most manipulators used to control output formatting

focus here on manipulators as they pertain to output

manipulator may have immediate effect (e.g., endl), only affect next data

value output (e.g., setw), or affect all subsequent data values output (e.g.,

setprecision)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 167

I/O Manipulators (Continued)

Name Description

setw set field width

setfill set fill character

endl insert newline and flush

flush flush stream

dec use decimal

hex use hexadecimal

oct use octal

showpos show positive sign

noshowpos do not show positive sign

left left align

right right align

fixed write floating-point values in fixed-point notation

scientific write floating-point values in scientific notation

setprecision for default notation, specify maximum number of mean

ingful digits to display before and after decimal point; for

fixed and scientific notations, specify exactly how many

digits to display after decimal point (padding with trail

ing zeros if necessary)

Copyright c
2015, 2016

Michael D.
Adams

C++ 168Version: 2016-01-18

/O Manipulators Example

o example:

#include <iostream >

#include <iomanip >

int main (int argc, char * * argv)

{

const double pi = 3. 1415926535;

const double big = 123456789. 0;

// default notation

std:: cout << p i << ' ' << big & ’ \'n' ;

// fixed-point notation

std:: cout << std:: fixed pi << ' ' << big ' \n' ;

// scientific notation

std:: cout << std:: scientific & pi << ' ' << big & ' \n' ;

// fixed-point notation with 7 digits after decimal point

std:: cout << std:: fixed std:: setprecision (7) << pi << ' '

<< big & " \n' ;

// fixed-point notation with precision and width specified

std:: C out << std:: setW (8) << std:: fixed std:: setprecision (2)

<< pi << ' ' << std:: setw (20) << big ' \n' ;

// fixed-point notation with precision, width, and fill specified

Std : : Cout << Std : : SetW (8) << Std : : Set fill ('x') << Std : : fixed

<< std:: setprecision (2) << pi << ' ' << std:: setw (20) << big & ' \n'

return 0;

O Output:

. 14 159 1 .. 2 3 4 5 7.e. + 0 8

. 14 1593 1 2 3 4 5 6 789 . 0 00 000

. 14 1593 e -- 0 0 1 .. 2 3 4 568 e + 0.8

. 14.1 5 9 2 7 1 2 3 4 5 6 789 . 00 00 000

3. 14 1 2 3 4 5 6 789 . 00

xxxx3. 14 xxxxxxxx1 2 3 4 56789 .00

:

- I - H -

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

Section 2.3.6

Miscellany

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 170

Namespaces

mechanism for reducing likelihood of naming conflicts (i.e., attempt to use

same identifier to have different meaning in various places in code)

has general syntax:

namespace name {

code

}

all identifiers (e.g., variable names, function names, type names)

declared/defined in code code (i.e., code contained in namespace body)

made to belong to namespace name

identifiers only have to be unique within a single namespace

same identifier can be re-used in different namespaces

scope-resolution operator (i.e., ::) used to specify namespace to which

particular identifier belongs

using statement can be used to make identifiers declared in different

namespaces appear as if they were in current namespace

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 171

Namespaces: Example

using std::cout;

namespace mike {

int someValue;

void initialize() {

cout << "mike::initialize called\n";someValue = 0;

}

}

namespace fred {

double someValue;

void initialize() {

cout << "fred::initialize called\n";someValue = 1.0;

}

}

mike::initialize(); // call initialize in namespace mike

fred::initialize(); // call initialize in namespace fred

using mike::initialize;initialize(); // call initialize in mike namespace

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 172

Memory Allocation: new and delete

to allocate memory, use new statement

to deallocate memory allocated with new statement, use delete

statement

similar to malloc and free in C

two forms of allocation: 1) single object (i.e., nonarray case) and 2) array

of objects

array version of new/delete distinguished by []

example:

char* buffer = new char[64]; // allocate

// array of 64 chars

delete [] buffer; // deallocate array

double* x = new double; // allocate single double

delete x; // deallocate single object

important to match nonarray and array versions of new and delete:

char* buffer = new char[64]; // allocate

delete buffer; // ERROR: nonarray delete to

// delete array

// may compile fine, but crash

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 173

User-Defined Literals Example

11

}

1213

14

1 #include <iostream>2

#include <complex>

3

4 std::complex<long double> operator "" _i(long double d) {

5
return std::complex<long double>(0.0, d);

6

}

7

8 int main() {

9 auto z = 3.14_i;

10 std::cout << z << ’\n’;

// Program output:// (0,3.14)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 174

Section 2.4

Classes

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 175

Section 2.4.1

Classes, Members, and Access Specifiers

Copyright c
2015, 2016

Michael D.
Adams

176C++ Version: 2016-01-18

Classes

class is user-defined type

class specifies:

1 how objects of class are represented

2
operations that can be performed on objects of class

class consists of zero or more members

members can be of various types: data member, function member, and

others (e.g., type member)

data members define representation of object of class

function members (also called member functions) provide operations on

such objects

type members specify any types associated with class

interface is part of class that is directly accessible to its users

implementation is part of class that its users access only indirectly

through interface

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 177

Access
Specifiers (Public

and
Private)

can control level of access that users of class have to its members

three levels of access: private, protected, and public

private: member can only be accessed by other members of class and

friends of class

public: member can be accessed by any code

protected: relates to inheritance (discussion deferred until later)

public members constitute class interface

private members constitute class implementation

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 178

Class
Example

class typically has form:

class MyClass // The class is named MyClass.

{

public:

// public members

// (i.e., the interface to users)

private:

// usually functions and types (but not data)

// private members

// (i.e., the implementation details only

// accessible by members of class)

// usually functions,

};

types, and data

Copyright c
2015, 2016

Michael D.
Adams

179C++ Version: 2016-01-18

Default
Member

Access

class members are private by default

two code examples below are exactly equivalent:

class MyClass {

// ...

};

class MyClass {

private:

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 180

The struct
Keyword

struct is class where members public by default

two code examples below are exactly equivalent:

struct MyClass {

// ...

};

class MyClass {

public:

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 181

Data Members

class example:

class Vector_2 { // Two-dimensional vector class.

public:double x;

double y;};

// The x component of the vector.

// The y component of the vector.

void func() {

Vector_2 v;

v.x = 1.0;

v.y = 2.0;

// Set data member x to 1.0

// Set data member y to 2.0

}

above class has data members x and y

members accessed by member-selection operator (i.e., “.”)

Copyright c
2015, 2016

Michael D.
Adams

182C++ Version: 2016-01-18

Function Members

class example:

class Vector_2 { // Two-dimensional vector class.

public:double x; // The x component of the vector.

double y; // The y component of the vector.

void initialize(double x_, double y_);};

void Vector_2::initialize(double x_, double y_) {

x =x_;y

= y_;

}

void func() {

Vector_2 v; // Create Vector_2 called v.

v.initialize(1.0, 2.0); // Initialize v to (1.0, 2.0).

}

above class has member function initialize

to refer to member of class outside of class body must use

scope-resolution operator (i.e., ::)

for example, in case of initialize function, we use

Vector_2::initialize

member function always has object of class as implicit parameter

Copyright c
2015, 2016

Michael D.
Adams

183C++ Version: 2016-01-18

The this
Keyword

member function always has object of class as implicit parameter

implicit parameter passed in form of pointer using special variable called

this

normally, we do not explicitly write “this”, however

example:

class MyClass {

public:int updateValue(int newValue) {

int oldValue = value;value = newValue; // "value" means "this->value"

return oldValue;}

private:

int value;

};

void func() {

MyClass x;

x.updateValue(5);

// in MyClass::updateValue, variable this equals &x

}

Copyright c
2015, 2016

Michael D.
Adams

C++ 184Version: 2016-01-18

Definition
of

Function
Members in

Class
Body

member function whose definition is provided in body of class is

automatically inline

two code examples below are exactly equivalent:

class MyInteger {

public:// Set the value of the integer and return the old value.

int setValue(int newValue) {

int oldValue = value;value = newValue;return oldValue;}

private:

int value;

};

class MyInteger {

public:// Set the value of the integer and return the old value.

int setValue(int newValue);

private:

int value;

};

inline int MyInteger::setValue(int newValue) {

int oldValue = value;value = newValue;return oldValue;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 185

Type Members

example:

class Point_2 { // Two-dimensional point class.

public:typedef double Coordinate; // Coordinate type.

Coordinate x; // The x coordinate of the point.

Coordinate y; // The y coordinate of the point.

};

void func() {

Point_2 p;

// ...

Point_2::Coordinate x = p.x;

// Point_2::Coordinate same as double

}

above class has type member Coordinate

to refer to type member outside of class body, we must use

scope-resolution operator (i.e., ::)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 186

Friends

normally, only class has access to its private members

sometimes, necessary to allow another class or function to have access to

private members of class

friend of class is function/class that is allowed to access private members

of class

to make function or class friend of another class, use friend statement

example:

class SomeClass; // forward declaration of SomeClass

class MyClass {

// ...

friend void myFunc(); // function myFunc is

// friend of MyClass

friend class SomeClass; // class SomeClass is

// friend of MyClass

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 187

Class Example

class MyClass {

public:

int setValue(int newValue) {int oldValue =

value

value;= newValue;return oldValue;

// member function

}

private:

// save old value

// change value to new value

// return old value

friend void wasteTime();

void doNothing() {}

int value; // data member

};

void wasteTime() {

MyClass x;

x.doNothing();x.value // OK: friend

= 5; // OK: friend

}

void func() {

MyClass x;

x.setValue(5);

// x is object of type MyClass

// call MyClass’s setValue member

// (sets x.value to 5)

x.value = 5; // ERROR:

x.doNothing();

value is private

// ERROR: doNothing is private

}

Copyright c
2015, 2016

Michael D.
Adams

188C++ Version: 2016-01-18

const Member
Functions

Copyright c
2015, 2016

Michael D.
Adams 189C++ Version: 2016-01-18

Propagating
Values: Copying

and
Moving

Suppose that we have two objects of the same type and we want to

propagate the value of one object (i.e., the source) to the other object (i.e.,

the destination).

This can be accomplished in one of two ways: 1) copying or 2) moving.

Copying propagates the value of the source object to the destination

object without modifying the source object.

Moving propagates the value of the source object to the destination

object and is permitted to modify the source object.

Moving is always at least as efficient as copying, and for many types,

moving
is more efficient than copying.

For some types, copying does not make sense, while moving does (e.g.,

std::ostream, std::istream).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 190

Section 2.4.2

Constructors and Destructors

Copyright c
2015, 2016

Michael D.
Adams

191C++ Version: 2016-01-18

Constructors

when new object created usually desirable to immediately initialize it to

some known state

prevents object from accidentally being used before it is initialized

constructor is member function that is called automatically when object

created in order to initialize its value

constructor has same name as class (i.e., constructor for class T is

function T::T)

constructor has no return type (not even void)

constructor cannot be called directly (although placement new provides

mechanism for achieving similar effect, in rare cases when needed)

constructor can be overloaded

before constructor body is entered, all data members of class type are first

constructed

in certain circumstances, constructors may be automatically provided

sometimes, automatically provided constructors will not have correct

behavior

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 192

Default Constructor

constructor that can be called with no arguments known as default

constructor

if no constructors specified, default constructor automatically provided

that calls default constructor for each data member of class type (does

nothing for data member of built-in type)

class Vector { // Two-dimensional vector class.

public:Vector() { // Default constructor.

x_ = 0.0; y_ = 0.0;

}

// ...

private:double x_;

// The x component of the vector.

double y_; // The y component of the vector.

};

Vector u; // calls Vector(); u set to (0,0)Vector x(); // declares function x that returns Vector

Copyright c
2015, 2016

Michael D.
Adams 193C++ Version: 2016-01-18

Copy Constructor

for class T, constructor taking lvalue reference to T as first parameter that

can be called with one argument known as copy constructor

used to create object by copying from already-existing object

copy constructor for class T typically is of form T(const T&)

if no copy constructor specified (and no move constructor or move

assignment operator specified), copy constructor is automatically

provided that copies each data member (using copy constructor for class

and bitwise copy for built-in type)

class Vector { // Two-dimensional vector class.

public:// ... (e.g., default constructor)

Vector(const Vector& v) { // Copy constructor.

x_ =v.x_; y_= v.y_;

}

// ...

private:double x_; // The x component of the vector.

double y_; // The y component of the vector.

};

Vector v;

Vector w(v); // calls Vector(const Vector&)

Vector u = v; // calls Vector(const Vector&)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 194

Move Constructor

for class T, constructor taking rvalue reference to T as first parameter that

can be called with one argument known as move constructor

used to create object by moving from already-existing object

move constructor for class T typically is of form T(T&&)

if no move constructor specified (and no destructor, copy constructor, or

copy/move assignment operator specified), move constructor is

automatically provided that moves each data member (using move for

class and bitwise copy for built-in type)

class Vector { // Two-dimensional vector class.

public://

...

Vector(Vector&& v) { // Move constructor.

x_ =v.x_; y_ = v.y_;

}

// ...

private:double x_; // The x component of the vector.

double y_; // The y component of the vector.

};

Vector x(); // declares function x that returns Vector

Vector y = x(); // calls Vector(Vector&&) if move not elided

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 195

Constructor Example

class Vector { // Two-dimensional vector class.

public:Vector() { // Default constructor.

x_ = 0.0; y_ = 0.0;

}

Vector(const Vector& v) { // Copy constructor.

x_ =v.x_; y_= v.y_;

}

Vector(Vector&& v) { // Move constructor.
x_ =v.x_; y_ = v.y_;

}

Vector(double x, double y) { // Another constructor.

x_ =x; y_ = y;}

// ...

private:double x_; // The x component of the vector.

double y_; // The y component of the vector.

};

Vector u; // calls Vector(); u set to (0,0)

Vector v(1.0, 2.0); // calls Vector(double, double)

Vector w(v); // calls Vector(const Vector&)

Vector z = u; // calls Vector(const Vector&)Vector x(); // declares function x that returns Vector

Vector y = x(); // calls Vector(Vector&&) if move not elided

four constructors provided

Copyright c
2015, 2016

Michael D.
Adams

C++ 196Version: 2016-01-18

Initializer Lists

in constructor of class, often we want to control which constructor is used

to initialize each data member

since all data members are constructed before body of constructor is

entered, this cannot be controlled inside body of constructor

to allow control over which constructors are used to initialize individual

data members, mechanism called initializer lists provided

initializer list forces specific constructors to be used to initialize individual

data members before body of constructor is entered

data members always initialized in order of declaration, regardless
of

order in initializer list

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 197

Initializer List Example

class ArrayDouble {public: // array of doubles class

ArrayDouble(); // create empty array

ArrayDouble(int

// ...

private:

// ...

};

class Vector { //

public:Vector(int size)

// force data_

size); // create array of specified size

n-dimensional real vector class

: data_(size) {}

to be constructed with

// ArrayDouble::ArrayDouble(int)

// ...

private:

ArrayDouble data_; // elements of vector

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 198

Destructors

when object reaches end of lifetime, typically some cleanup required

before object passes out of existence

destructor is member
function that

is automatically called when object

reaches end of lifetime in order to perform any necessary cleanup

often object may have allocated resources associated with it (e.g.,

memory, files, devices, network connections, processes/threads)

when object destroyed, must ensure that any resources associated with

object are released

destructors often serve to release resources associated with object

destructor for class T always has name T::˜T

destructor has no return type (not even void)

destructor cannot be overloaded

destructor always takes no parameters

if no destructor is specified, destructor automatically provided that calls

destructor for each data member of class type

sometimes, automatically provided destructor will not have correct

behavior

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 199

Destructor
Example

example:

class MyClass {

public:

MyClass(int bufferSize) { // Constructor.

// allocate some memory for buffer

bufferPtr = new char[bufferSize];

}

˜MyClass() { // Destructor.

// free memory previously allocated

delete [] bufferPtr;}

// copy constructor,

private:

char* bufferPtr;

};

freed

assignment operator, ...

// pointer to start of buffer

without explicitly-provided destructor (i.e., with destructor automatically

provided by compiler), memory associated with bufferPtr would not be

Copyright c
2015, 2016

Michael D.
Adams

200C++ Version: 2016-01-18

Section 2.4.3

Operator Overloading

Copyright c
2015, 2016

Michael D.
Adams

201C++ Version: 2016-01-18

Operator Overloading

can specify the meaning of operator whose operands are one or more

user-defined types through process known as operator overloading

operators that can be overloaded:

arithmetic

bitwise

logical

relational

assignment =

compound assignment

increment/decrement

subscript []

function call

address, indirection

others

+ - * / %

ˆ & | ˜ << >>

! && ||

< > <= >= == !=

+= -= *= /= %= ˆ= &=

++ --

()

& *

->* , -> new delete

|= <<= >>=

not possible to change precedence/associativity or syntax of operators

meaning of operator specified by operator function, where name of

function
is operator followed by operator itself (e.g., operator+)

Copyright c
2015, 2016

Michael D.
Adams 202C++ Version: 2016-01-18

Operator Overloading (Continued 1)

binary operator can be defined either by: 1) member function taking one

argument, or 2) global function taking two arguments

for any binary operator @, a@b can be interpreted as a.operator@(b) or

operator@(a, b)

unary operator can be defined either by: 1) member function taking no

arguments, or 2) global function taking one argument

for any unary operator @, @a can be interpreted as a.operator@() or

operator@(a)for any postfix unary operator @, a@ can be interpreted as

a.operator@(int) or operator@(a, int) (where second argument

only exists to distinguish postfix operators from prefix ones)

if member and global functions both defined, argument matching rules

determine which is called

assignment, function-call, subscript, and member-selection operators

must be overloaded as member functions

if first operand of overloaded operator not object of class type, must use

global function

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 203

Operator Overloading (Continued 2)

for most part, operators can be defined quite arbitrarily for user-defined

types

for example, no requirement that “++x”, “x += 1”, and “x = x + 1” be

equivalent

of course, probably not advisable to define operators in very

counterintuitive ways, as will inevitably lead to bugs in code

some examples showing how expressions translated into function calls

are as follows:

Expression Member Function Global Function

y = x

y += x

x + y

++xx++

x == y

x < y

y.operator=(x)y.operator+=(x)x.operator+(y)x.operator++()x.operator++(int)x.operator==(y)x.operator<(y) —

operator+=(y, x)

operator+(x, y)

operator++(x)operator++(x, int)

operator==(x, y)

operator<(x, y)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 204

Operator Overloading Example: Vector

class Vector { // Two-dimensional vector class

public:Vector() : x_(0.0), y_(0.0) {}

Vector(double x, double y) : x_(x), y_(y) {}

double x() const { return x_; }

double y() const { return y_; }

private:

double x_; // The x component

double y_; // The y component

};

// Vector addition

Vector operator+(const Vector& u, const Vector& v)

{return Vector(u.x() + v.x(), u.y() + v.y());}

// Dot product

double operator*(const Vector& u, const Vector& v)

{return u.x() * v.x() + u.y() * v.y();}

void func() {

Vector u(1.0, 2.0);

Vector v(u);

Vector w;

w = u + v; // w.operator=(operator+(u, v))

double c = u * v; // calls operator*(u, v)

// since c is built-in type, assignment operator

// does not require function call

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 205

Operator Overloading Example: Array10

class Array10 { // Ten-element real array class

public:Array10() {

for (int i = 0; i < 10; ++i) { // Zero array

data_[i] = 0;

}

}

const double& operator[](intreturn data_[index];

}

double& operator[](int index) {

return data_[index];

}

private:double data_[10];};

void func() {

Array10 v;

index) const {

// array data

v[1] = 3.5; // calls Array10::operator[](int)

double c = v[1]; // calls Array10::operator[](int)

const Array10

ERROR: u[1] is const

// calls Array10::operator[](int) const

}

u[1] = 2.5;

double d = u[1];

//

u;

Copyright c
2015, 2016

Michael D.
Adams

206C++ Version: 2016-01-18

Operator Overloading: Global Versus Member Functions

some considerations: access to private data; whether first operand has

class type

class Complex { // Complex number type.

public:Complex(double re, double im) : re_(re), im_(im) {}

double real() const { return re_; }

double imag() const { return im_; }

Complex operator+(const double&);

private:

double re_; // The real part.

double im_; // The imaginary part.

};

// Overload as global function.

Complex operator+(const Complex& a, const double& b) {

return Complex(a.real() + b, a.imag());

}

// Overload as member function.

Complex Complex::operator+(const double& b) {

return Complex(real() + b, imag());

}

// This can only be accomplished with global function.

Complex operator+(const double& b, const Complex& a) {

return Complex(b + a.real(), a.imag());

}

void myFunc() {

Complex a(1.0, 2.0);

Complex b(1.0, -2.0);

double r = 2.0;

Complex c = a + r; // could use global or member function

// operator+(a, r) or a.operator+(r)Complex d = r + a; // must use global function

// operator+(r, a)

// since r.operator+(a) will not work

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 207

Copy Assignment Operator

for class T, T::operator= having exactly one parameter that is lvalue

reference to T known as copy assignment operator

used to assign, to already-existing object, value of another object by

copying

if no copy assignment operator specified (and no move constructor or

move assignment operator specified), copy assignment operator

automatically provided that copy assigns to each data member (using data

member’s copy assignment operator for class and bitwise copy for built-in type)

copy assignment operator for class T typically is of form

T& operator=(const T&) (returning reference to *this)

copy assignment operator returns (nonconstant) reference in order to

allow for statements like following to be valid (where x, y, and z are of

type T and T::modify is a non-const member function):

x = y = z; // x.operator=(y.operator=(z))

(x = y) = z; // (x.operator=(y)).operator=(z)

(x = y).modify(); // (x.operator=(y)).modify()

be careful to correctly consider case of self-assignment

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 208

Self-Assignment
Example

are involved

in practice, self assignment typically occurs when references (or pointers)

example:

void doSomething(SomeType& x, SomeType& y) {

x = y;

// ...

// self assignment if &x == &y

}

void myFunc() {

SomeType z;

// ...

doSomething(z,// ...

}

z); // results in self assignment

Copyright c
2015, 2016

Michael D.
Adams

209C++ Version: 2016-01-18

Move
Assignment

Operator

for class T, T::operator= having exactly one parameter that is rvalue

reference to T known as move assignment operator

used to assign, to already-existing object, value of another object by

moving

if no move assignment operator specified (and no destructor, copy/move

constructor, or copy assignment operator specified), move assignment

operator automatically provided that move assigns to each data member

(using move for class and bitwise copy for built-in type)

move assignment operator for class T typically is of form

T& operator=(T&&) (returning reference to *this)

move assignment operator returns (nonconstant) reference for same

reason as in case of copy assignment operator

self-assignment should probably not occur in move case (but might be

prudent to protect against “insane” code with assertion) (library effectively

forbids self-assignment for move)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 210

Copy/Move Assignment Operator Example: Complex

class Complex {

public:

Complex(double re = 0.0, double im = 0.0) :

re_(re), im_(im) {}

Complex(const Complex& a) : re_(a.re_), im_(a.im_) {}

Complex(Complex&& a) : re_(a.re_), im_(a.im_) {}

Complex& operator=(const Complex& a) { // Copy assign

if (this != &a) {

re_ = a.re_; im_ = a.im_;

}

return *this;

}

Complex& operator=(Complex&& a) { // Move assign

re_ = a.re_; im_ = a.im_;

return *this;

}

private:

double re_; // The real part.

double im_; // The imaginary part.

};

int main() {

Complex z(1.0, 2.0);

Complex v(1.5, 2.5);

v = z; // v.operator=(z)

v = Complex(0.0, 1.0); // v.operator=(Complex(0.0, 1.0))

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 211

Section 2.4.4

Miscellany

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 212

std::initializer_list Example

18

19

20

21

22 seq.print();

23 }

1 #include <iostream>2

#include <vector>

3

4
class Sequence {

5
public:

6

Sequence(std::initializer_list<int> list) {

7 for (std::initializer_list<int>::const_iterator i =

8 list.begin(); i != list.end(); ++i)

9 elements_.push_back(*i);

10 }

11
void print() const {

12 for (std::vector<int>::const_iterator i =

13
elements_.begin(); i != elements_.end(); ++i)

14 std::cout << *i << ’\n’;15

}

16
private:

17

std::vector<int> elements_;

};

int main() {

Sequence seq = {1, 2, 3, 4, 5, 6};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 213

Explicit
Constructors

constructor callable with single argument can be used in implicit

conversions (e.g., when attempting to obtain matching type for function

parameter in function call)

often, desirable to prevent constructor from being used for implicit

conversions

to accommodate this, constructor can be marked as explicit

explicit constructor is constructor that cannot
be

used
to

perform implicit

conversions

prefixing constructor declaration with explicit keyword makes

constructor explicit

example:

class Widget {

public:

explicit Widget(int); // explicit constructor

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 214

Example Without
Explicit Constructor

#include <cstdlib>1

2

3
// one-dimensional integer array class

4
class IntArray {

5
public:

6
// create array of int with size elements

7 IntArray(std::size_t size) { /* ... */ };

8 // ...

9 };

10

11 void processArray(const IntArray& x) {

12 // ...

13 }
14

15 int main() {

16
// following lines of code almost certain to be

17
// incorrect, but valid due to implicit type

18
// conversion provided by

19
// IntArray::IntArray(std::size_t)

20
IntArray a = 42;

21
// probably incorrect

22
// implicit conversion effectively yields code:

23
// IntArray a = IntArray(42);

24 processArray(42);

25
// probably incorrect

26
// implicit conversion effectively yields code:

27
// processArray(IntArray(42));

28 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 215

Example With Explicit
Constructor

1

9

1011

12
13

}
14

15

18 }

#include <cstdlib>

2

3
// one-dimensional integer array class

4
class IntArray {

5
public:

6

// create array of int with size elements

7
explicit IntArray(std::size_t size) { /* ... */ };

8 // ...

};

void processArray(const IntArray& x) {

// ...

int main() {

16
IntArray a = 42; // ERROR: cannot convert

17 processArray(42); // ERROR: cannot convert

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 216

Explicitly
Deleted/Defaulted

Special Member
Functions

can explicitly default or delete special member functions (i.e., default

constructor, copy constructor, move constructor, destructor, copy

assignment operator, and move assignment operator)

can also delete non-special member functions

example:

class Thing {

public:Thing() = default;

// Prevent copying.

Thing(const Thing&) = delete;

Thing& operator=(const Thing&) = delete;

Thing(Thing&&) = default;

Thing& operator=(Thing&&) = default;

˜Thing() = default;

// ...

};

// Thing is movable but not copyable.

Copyright c
2015, 2016

Michael D.
Adams

C++ 217Version: 2016-01-18

{ // Character buffer class.

Buffer(int bufferSize)bufSize_

=

Assignment Operator Example: Buffer

example:

class Buffer

public:

bufferSize;bufPtr_ =}

Buffer(const Buffer& buffer)

bufSize_ = buffer.bufSize_;

bufPtr_ =

}

{ // Constructor.

new char[bufferSize];

for ++i)

new char[bufSize_];

(int i = 0;

bufPtr_[i] = buffer.bufPtr_[i];

˜Buffer() {

i < bufSize_;delete

[] bufPtr_;

if

}

// Destructor.

(this !=

{ // Copy constructor.

Buffer& operator=(const Buffer& buffer)

{

delete [] bufPtr_;

&buffer)

bufSize_ = buffer.bufSize_;

bufPtr_ = new char[bufSize_];

for (int i = 0; i < bufSize_; ++i)

bufPtr_[i] = buffer.bufPtr_[i];

}

return *this;

}

// ...

private:};

int bufSize_;char* bufPtr_;

{ // Copy assignment operator.

// buffer size

// pointer to start of buffer

without explicitly-provided assignment operator (i.e., with assignment

corruption would result

operator automatically provided by compiler), memory leaks and memory

Copyright c
2015, 2016

Michael D.
Adams

218C++ Version: 2016-01-18

Delegating
Constructors

sometimes, one constructor of class needs to performs all work of another

constructor followed by some additional work

rather than duplicate common code in both constructors, one constructor

can use its initializer list to invoke other constructor (which must be only

one in initializer list)

constructor that invokes another constructor via initializer list called

delegating constructor

example:

class Widget {

public:Widget(char c, int i) : c_(c),

i_(i) {}

Widget(int i) : Widget(’a’, i) {}

// delegating constructor

// ...

private:char c_;

int i_;

};

int main() {

Widget w(’A’, 42);

Widget v(42);

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 219

Static Data Members

sometimes want to have object that is shared by all objects of class

data member that is shared by all objects of class is called static data

member

to make data member static, declare using static qualifier

static data member must (in most cases) be defined outside body of class

example:

class Widget {

public:Widget() {++count_;}Widget(const Widget&) {++count_;}Widget(Widget&&) {++count_;}˜Widget() {--count_;}//

...

private:

static int count_; // total number of Widget

// objects in existence

};

// Define (and initialize) count member.

int Widget::count_ = 0;

Copyright c
2015, 2016

Michael D.
Adams

220C++ Version: 2016-01-18

Static
Member

Functions

sometimes want to have member function that does not operate on

objects of class

member function of class that does not operate on object of class (i.e.,

has no this variable) called static member function

to make member function static, declare using static qualifier

example:

class MyClass {

public://

...

// convert degrees to radians

static double degToRad(double deg)

{return (M_PI / 180.0) * deg;}private:

// ...

};

void func() {

double rad;

rad = MyClass::degToRad(45.0);

rad = x.degToRad(45.0); // x is ignored

}

Copyright c
2015, 2016

Michael D.
Adams

C++ 221Version: 2016-01-18

constexpr Member Functions

like non-member functions, member functions can also be qualified as

constexpr to indicate function can be computed at compile time

provided that all arguments to function are constant expressions

some additional restrictions on constexpr member functions relative to

nonmember case (e.g., cannot be virtual)

constexpr member function implicitly inline

constexpr member function not implicitly const (as of C++14)

Copyright c
2015, 2016

Michael D.
Adams

C++ 222Version: 2016-01-18

constexpr Constructors

constructors can also be qualified as constexpr to indicate object

construction
can be

performed at compile time provided that all

arguments to constructor are constant expressions

constexpr constructor implicitly inline

Copyright c
2015, 2016

Michael D.
Adams

223C++ Version: 2016-01-18

Example:
Constexpr Constructors

and
Member

Functions

// Two-dimensional vector class.

class Vector {

public:

constexpr Vector() : x_(0), y_(0) {}

constexpr Vector(double x, double y) : x_(x), y_(y) {}

constexpr Vector(const Vector& v) : x_(v.x_), y_(v.y_) {}

constexpr Vector(Vector&& v) : x_(v.x_), y_(v.y_) {}

Vector& operator=(const Vector& v) {

if (this != &v) {

x_= v.x_; y_ = v.y_;

}

return *this;

}

constexpr double x() const {return x_;}

constexpr double y() const {return y_;}

constexpr double squaredLength() const {

return x_ * x_ + y_ * y_;

}

// ...

private:

double x_; // The x component of the vector.

double y_; // The y component of the vector.

};

Copyright c
2015, 2016

Michael D.
Adams

224C++ Version: 2016-01-18

The mutable
Qualifier

type for data member can be qualified as mutable meaning that

member does not affect externally visible state of class

mutable data member can be modified in const member function

mutable qualifier often used for mutexes, condition variables, cached

values, statistical information for performance analysis or debugging

Copyright c
2015, 2016

Michael D.
Adams

225C++ Version: 2016-01-18

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 226

Stream Inserters

stream inserters write data to output stream

overload operator<<

have general form

std::ostream& operator<<(std::ostream&, T) where type T is

typically const lvalue reference type

example:

std::ostream& operator<<(std::ostream& outStream,

const Complex& a)

{

outStream << a.real()

<< ’ ’return outStream;

}

<< a.imag();

inserter and extractor should use compatible formats (i.e., what is written

by extractor should be readable by inserter)

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18 227C++

Stream Extractors

stream extractors read data from input stream

overload operator>>

have general form

std::istream& operator>>(std::istream&, T) where type T is

typically non-const lvalue reference type

example:

std::istream& operator>>(std::istream& inStream,

Complex& a)

{

double real = 0.0;

double imag = 0.0;

inStream >> real >> imag;

a = Complex(real, imag);return inStream;

}

Copyright c
2015, 2016

Michael D.
Adams

228C++ Version: 2016-01-18

Section 2.4.5

Temporary Objects

Copyright c
2015, 2016

Michael D.
Adams

229C++ Version: 2016-01-18

Temporary Objects

A temporary object is an unnamed object introduced by the compiler.

Temporary objects are used during:

evaluation of expressions

argument passing

function returns (that return by value)

reference initialization

It is important to understand when temporary objects can be introduced,

since the introduction of temporaries impacts performance.

Evaluation of expression:

std::string s1("Hello ");

std::string s2("World");

std::string s;

s = s1 + s2; // must create temporary

// std::string _tmp(s1 + s2);

// s = _tmp;

Argument passing:

double func(const double& x);

func(3); // must create temporary

// double _tmp = 3;

// func(_tmp);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 230

Temporary Objects (Continued)

Reference initialization:

int i = 2;

const double& d = i; // must create temporary

// double _tmp = i;

// const double& d = _tmp;

Function return:

std::string getMessage();std::string s;

s = getMessage(); // must create temporary

// std::string _tmp(getMessage());// s = _tmp;

In most (but not all) circumstances, a temporary object is destroyed as the

last step in evaluating the full expression that contains the point where the

temporary object was created .

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 231

Temporary Objects Example

1
class Complex {

2
public:

3

im_(im) {}

9
˜Complex() =

double real()11

double imag()12 private:

Complex(double re = 0.0,

{return re_;}

{return im_;}

double

default;

13
double re_; // The real part.

14
double im_; // The imaginary part.

15 };
16

17 Complex operator+(const Complex& a,

18
return Complex(a.real()19 }

20

21 int main() {

22
Complex a(1.0, 2.0);

23
Complex b(a + a);

24 b = a + b;

25 }

+ b.real(), a.imag()

im = 0.0) :

5
Complex(const Complex& a) = default;

6 Complex(Complex&& a) =7

Complex& operator=(const Complex& a) = default;

8
Complex& operator=(Complex&& a)default;

10 const

const

= default;

const Complex& b) {

re_(re),

4

+ b.imag());

Copyright c
2015, 2016

Michael D.
Adams

C++ 232Version: 2016-01-18

Temporary Objects Example (Continued)

Original code:

int main() {

Complex a(1.0, 2.0);

Complex b(a + a);

b = a + b;

}

Code showing temporaries (assuming no optimization):

int main() {

Complex a(1.0, 2.0);

Complex _tmp1(a + a);

Complex b(_tmp1);

Complex _tmp2(a + b);

b = _tmp2;

}

Original code:

Complex operator+(const Complex& a, const Complex& b) {

return Complex(a.real() + b.real(), a.imag() + b.imag());

}

Code showing temporaries:

Complex operator+(const Complex& a, const Complex& b) {

Complex _tmp(a.real() + b.real(), a.imag() + b.imag());

return _tmp;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ 233Version: 2016-01-18

16

17

Prefix Versus Postfix Increment/Decrement

1 class Counter {

2
public:

3

Counter() : count_(0) {}

4
int getCount() const {return count_;}

5

Counter& operator++() { // prefix increment

6 ++count_;

7 return *this;

8 }

9
Counter operator++(int) { // postfix increment

10 Counter old(*this);

11 ++count_;

12 return old;

13 }

14
private:

15

int count_; // counter value

};

18 int main() {

19 Counter x;

20
Counter y;

21 y = ++x; // no temporaries, int increment, operator=

22 y = x++; // 1 temporary, 1 named, 2 constructors,

23
// 2 destructors, int increment, operator=

24 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 234

Compound Assignment
Versus Separate

Assignment

12

13

14

17

18 }

1
#include <complex>

2

using std::complex;

3

4 int main() {

5 complex<double> a(1.0, 1.0);

6 complex<double> b(1.0, -1.0);

7 complex<double> z(0.0, 0.0);

8

9
// 2 temporary objects

10 // 2 constructors, 2 destructors

11
// 1 operator=, 1 operator+, 1 operator*z = b * (z + a);

// no temporary objects

15
// only 1 operator+= and 1 operator*=16

z += a;

z *= b;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 235

Lifetime
of

Temporary
Objects

Normally, a temporary object is destroyed as the last step in evaluating the

full expression that contains point where temporary object was created.

First exception: When a default constructor with one or more default

arguments is called to initialize an element of an array.

Second exception: When a reference is bound to a temporary (or a

subobject of a temporary), the lifetime of the temporary is extended to

match the lifetime of
the reference, with following exceptions:

A temporary bound to a reference member in a constructor initializer list

persists until the constructor exits.

A temporary bound to a reference parameter in a function call persists until

the completion of the full expression containing the call.

A temporary bound to the return value of a function in a return statement is

not extended, and is destroyed at end of the full expression in the return

statement.

A temporary bound to a reference in an initializer used in a new-expression

persists until the end of the full expression containing that new-expression.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 236

Lifetime
of

Temporary
Objects Examples

Example:

void func() {

std::string s1("Hello");

std::string s2(" ");

std::string s3("World!\n");const std::string& s

= s1 + s2 + s3;

std::cout << s; // OK?

}

Example:

const std::string& getString() {

return std::string("Hello");

}

void func() {

std::cout << getString(); // OK?

}

Copyright c
2015, 2016

Michael D.
Adams

C++ 237Version: 2016-01-18

Return
Value

Optimization
(RVO)

return value optimization (RVO) is compiler optimization technique that

eliminates copy of return value from local object in function to object in caller

example:

SomeType function() {

return SomeType(); // returns temporary object

}

void caller() {

SomeType x = function(); // copy construction

}

without RVO: return value of function (which is local to function) is copied to new

temporary object (so return value not lost when function returns); then, value of

new temporary object copied to object that is to hold return value

with RVO: return value of function is placed directly in object (in caller) that is to

hold return value

by avoiding need for temporary object to hold return value, eliminates one copy

constructor and destructor call

any good compiler should support RVO, although RVO cannot always be applied

in all circumstances

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 238

Named Return
Value Optimization (NRVO)

named return value optimization (NRVO) is variation on RVO where

return value is named object (i.e., not temporary object)

example:

SomeType function() {

SomeType result;

// ...

return result; // returns named object

}

void caller() {

SomeType x = function(); // copy construction

}

compiler optimizes away result in function and return value

constructed directly in x

effectively, result becomes reference to x

code with NRVO more efficient (i.e., move/copy constructor and destructor

calls eliminated)

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18C++ 239

Section 2.4.6

Functors

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 240

Functors

function object (also known as functor) is object that can be invoked or

called as if it were ordinary function

class that provides member function that overloads operator() is

called functor class and object of that class is functor

functors more flexible than functions as functors are objects and can

therefore carry arbitrary state information

functors are extremely useful, especially in generic programming

as we will see later, standard library makes heavy use of functors

Copyright c
2015, 2016

Michael D.
Adams

C++ 241Version: 2016-01-18

Functor Example: Less Than

struct LessThan {

};

return x

bool operator()(double x,

y;

}

// Functor class

<

void myFunc() {

double a

double b

double y)

= 1.0;

= 2.0;

LessThan lessThan;bool result

= lessThan(a,

{

// Functor

// lessThan is functor,

// result ==

b);// calls LessThan::operator()(double,true

not function

double)

}

Copyright c
2015, 2016

Michael D.
Adams

242C++ Version: 2016-01-18

Functor Example With State

class IsGreater { // Functor class

public:IsGreater(int threshold) : threshold_(threshold) {}

bool operator()(int x) const {

return x > threshold_;}

private:

// state information for functor

int threshold_; // threshold for comparison

};

void myFunc() {

IsGreater isGreater(5); // functor

int x = 3;

bool result = isGreater(x);

// calls IsGreater::operator()(int)

// result == false

}

Copyright c
2015, 2016

Michael D.
Adams

243C++ Version: 2016-01-18

Section 2.5

Templates

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 244

Templates

generic programming: algorithms written
in terms of

types
to be

specified later (i.e., algorithms are generic in sense of being applicable to

any type that meets only some very basic constraints)

templates facilitate generic programming

extremely important language feature

avoids code duplication

leads to highly efficient and customizable code

promotes code reuse

C++ standard library makes very heavy use of templates (actually, most of

standard library consists of templates)

many other libraries make heavy use of templates (e.g., CGAL, Boost)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 245

Section 2.5.1

Function Templates

Copyright c
2015, 2016

Michael D.
Adams

246C++ Version: 2016-01-18

Motivation for
Function

Templates

consider following functions:

int max(int x, int y)

{return x > y ? x : y;}

double max(double x, double y)

{return x > y ? x : y;}

// more similar-looking max functions...

each
of

above functions
has same general form; that is, for some type

T,

we have:

T max(T x, T y)

{return x > y ? x : y;}

would be nice if we did not have to repeatedly type, debug, test, and

maintain nearly identical code

in effect, would like code to be parameterized on type T

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 247

Function
Templates

function template is family of functions parameterized by one or

parameters

each template parameter can be: non-type (integral constant), type,

template, or parameter pack (in case of variadic template)

syntax for template function has general form:

template <parameter list> function declaration

parameterlist: parameters on which template function depends

function: function declaration

type parameter designated by class or typename keyword

template parameter designated by template keyword

template template parameter must use class keyword

non-type (integral constant) parameter designed by its type (e.g., int)

example:

// declaration of function template

template <class T> T max(T x, T y);

// definition of function template

template <class T> T max(T x, T y)

{return x > y ? x : y;}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 248

Function Templates (Continued)

to explicitly identify particular instance of template, use syntax:

function<parameters>

example:

for function template declaration:

template <class T> T max(T x, T y);

max<int> refers to int max(int, int)

max<double> refers to double max(double, double)

compiler only creates code for function template when it is instantiated

(i.e., used)

therefore, definition of function template must be visible in place where it

is instantiated

consequently, function template definitions usually appear in header file

template code only needs to pass basic syntax checks, unless actually

instantiated

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 249

11

}

1213

14

15
16

17

18 y = tmp;
19

}
20

23

24

25

26 }

Function Template Examples

1
// compute minimum of two values

2
template <class T>

3 T min(T x, T y) {

4
return x < y ? x : y;

5 }

6

7
// compute square of value

8
template <typename T>

9 T sqr(T x) {

10 return x * x;

// swap two values

template <class T>

void swap(T& x, T& y) {

T tmp = x;

x = y;

21
// increment value by constant

22
template <int N = 1, typename T>

T& increment_by(T& n) {

N;n +=

return n;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 250

Template
Function

Overloading Resolution

overload resolution proceeds (in order) as follows:

1
look for an exact match with zero or more trivial conversions on

(nontemplate) functions; if found call it

2
look for function template from which function that can be called with exact

match with zero or more trivial conversions can be generated; if found, call it

3
try ordinary overloading resolution for functions; if function found, call it;

otherwise, call is error

in each step, if more than one match found, call is ambiguous and is error

template function only used in case of exact match (unless
explicitly forced)

example:

template <class T> T max(T x, T y) {

return x > y ? x : y;

}

double x, y, z;

int i, j, k;

// ...

z = max(x, y); // calls max<double>

k = max(i, j); // calls max<int>

z = max(i, x); // ERROR: no match

z = max<double>(i, x); // calls max<double>

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 251

Section 2.5.2

Class Templates

Copyright c
2015, 2016

Michael D.
Adams

252C++ Version: 2016-01-18

Motivation for
Class

Templates

consider almost identical complex number classes:

1 class ComplexDouble {

13 float real() const { return re_; }

14 float imag() const { return im_; }

15 // ...

16 private:

17 float re_; // real part

18 float im_; // imaginary part

19 };

2 ComplexDouble(double re = 0.0, double im = 0.0) : re_(re), im_(im) {}

3 double real() const { return re_; }

4 double imag() const { return im_; }

5 // ...

6 private:

7 double re_; // real part

8 double im_; // imaginary part

9 };

10

11 class ComplexFloat {

12 ComplexFloat(float re = 0.0, float im = 0.0) : re_(re), im_(im) {}

both of above classes are special cases of following class parameterized

on type T:

1 class Complex {

2 Complex(T re = T(0), T im = T(0)) : re_(re), im_(im) {}

3 T real() const { return re_; }

4 T imag() const { return im_; }

5 // ...

6 private:

7 T re_; // real part

8 T im_; // imaginary part

9 };

again, would be nice if we did not have to repeatedly type, debug, test,

and maintain nearly identical code

Copyright c
2015, 2016

Michael D.
Adams 253C++ Version: 2016-01-18

Class
Templates

class template is family of classes parameterized on one or more

parameters

each template parameter can be: non-type (integral constant), type,

template, or parameter pack (in case of variadic template)

syntax has general form:

template <parameter list> class

parameter list: parameter list for class

class: class/struct declaration or definition

example:

// declaration of class template

template <class T, unsigned int size>class MyArray;

// definition of class template

template <class T, unsigned int size>class MyArray {

// ...

T array_[size];

};

MyArray<double, 100> x;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 254

Class Templates (Continued)

compiler only generates code for class template when it is instantiated

(i.e., used)

since compiler only generates code for class template when it is

instantiated, definition of template must be visible at point where

instantiated

consequently, class template code usually placed in header file

template code only needs to pass basic syntax checks, unless actually

instantiated

compile errors related to class templates can often be very long and

difficult to parse (especially, when template class has parameters that are

template classes which, in turn, have parameters that are template

classes, and so on)

be careful when nesting angle brackets, since << and >> may be parsed

as left shift and right shift operators in some contexts (e.g., prior to C++11

std::vector<std::complex<double>> would lead to parsing error)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 255

Class
Template Example

1
template <class T>

2
class Complex { // complex number class template

3
public:

4
Complex(T re = T(0), T im = T(0)) :

5 re_(re), im_(im) {}

6 T real() const {

7 return re_;

8 }

9 T imag() const {

10 return im_;

11 }

12 // ...

13
private:

14

T re_; // real part
15

T im_; // imaginary part

16 };

17

Complex<int> zi;

Complex<double> zd;

18

19

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 256

Class-Template Default Parameters

class template parameters can have default values

example:

template <class T = int, unsigned int size = 2>

struct MyArray {

T data[size];

};

MyArray<> a; // MyArray<int, 2>

MyArray<double> b; // MyArray<double, 2>

MyArray<double, 10> b; // MyArray<double, 10>

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 257

Qualified
Names

qualified name is name that specifies scope

example:

#include <iostream>int main(int argc, char** argv){

for (int i = 0; i < 10; ++i)

std::cout << "Hello, world!" << std::endl;

return 0;

}

in above example, names std::cout and std::endl are qualified, while

names main, argc, argv, and i, are not qualified

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 258

Dependent Names

dependent name is name that
depends

on
template parameter

example:

template <class T>

class MyClass

{

public:struct Thing {

T array[3];};

Thing x;

typedef T* Pointer;

int i;

};

names Thing and Pointer are dependent

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 259

Qualified
Dependent Names

to avoid any potential ambiguities, compiler will automatically assume

qualified dependent name does not name type unless typename

keyword is used

must precede qualified dependent name that names type by typename

following code is invalid and will cause compile error:

template <class T>

class MyClass {

std::vector<T> vec; // ERROR?

std::vector<T>::iterator iter; // ERROR

std::vector<T>::value_type val; // ERROR

// ...

};

must use code like following instead:

template <class T>

class MyClass {

typename std::vector<T> vec;

typename std::vector<T>::iterator iter;

typename std::vector<T>::value_type val;

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

260C++ Version: 2016-01-18

Why typename is Needed

1 int x = 42;

2

3
template <class T> void func() {

4
// The compiler must be able to check syntactic

5
// correctness of this template code without

6
// knowing T. Without knowing T, however, the

7
// meaning of following line of code is ambiguous.

8 // Is it a declaration of a variable x or an

9
// expression consisting of a binary operator*10
// with operands T::foo and x?

11 T::foo* x;

12 // ...

13 }

14

15 struct ContainsType {

16
using foo = int*; // foo is type

17 // ...

18 };

19

20 struct ContainsValue {

21 static int foo; // foo is value

22 // ...

23 };

24

25 int main() {

26
// Which one of the following should be invalid?

27 func<ContainsType>();

28 func<ContainsValue>();

29 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 261

Template Template Parameter
Example

1 #include <vector>2

#include <list>3

#include <deque>
4

#include <memory>

5

6

7
typename Value>

8

class Stack {

public://

...

private:

9

10

11

12

};

int main() {

16 Stack<std::vector,

13

14

15

19 }

template <template <class,

Container<Value,

class> class Container,

int> s1;

17 Stack<std::list, int> s2;

18 Stack<std::deque, int> s3;

std::allocator<Value>> data_;

Copyright c
2015, 2016

Michael D.
Adams

262C++ Version: 2016-01-18

Section 2.5.3

Variable Templates

Copyright c
2015, 2016

Michael D.
Adams

263C++ Version: 2016-01-18

Variable Templates

variable template is family of variables parameterized on one or more

parameters

each template parameter can be: non-type (integral constant), type,

template, or parameter pack (in case of variadic templates)

although less frequently used than function and class templates, variable

templates quite useful in some situations

syntax has general form:

template <parameter list> variable

parameter list: parameter list for variable template

variable: variable declaration

example:

template <class T>

T meaning_of_life = T(42);

int x = meaning_of_life<int>;

Copyright c
2015, 2016

Michael D.
Adams

264C++ Version: 2016-01-18

Variable Template
Example: pi

1 #include <limits>2

#include <iostream>

3

4
template <typename T>

5
constexpr T pi =

6 T(3.14159265358979323846264338327950288419716939937510L);

7

8 int main() {

9 std::cout.precision(

10
std::numeric_limits<long double>::max_digits10);

11 std::cout

12
<< pi<int> << ’\n’

13
<< pi<float> << ’\n’

14
<< pi<double> << ’\n’

15
<< pi<long double> << ’\n’;

16 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 265

Section 2.5.4

Alias Templates

Copyright c
2015, 2016

Michael D.
Adams

266C++ Version: 2016-01-18

Alias
Templates

alias template is family of types parameterized on one or more

parameters

each template parameter can be: non-type (integral constant), type,

template, or parameter pack (in case of variadic templates)

syntax has general form:

template <parameter list> alias

parameter list: parameter list for class

alias: alias declaration (i.e., with using)

example:

template <class Value,class Compare = std::greater<Value>,

class Alloc = std::allocator<Value>>

using GreaterSet = typename std::set<Value, Compare,Alloc>;

GreaterSet<int> x{4, 1, 3, 2};

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18 267C++

Alias
Template

Example

1 #include <iostream>2 #include <set>3

4
template <typename Compare, typename Alloc =

5 std::allocator<int>>

6
using IntSet = typename std::set<int, Compare, Alloc>;

7

8 int main() {

9 IntSet<std::less<int>> x{1, 4, 3, 2};10 IntSet<std::greater<int>> y{1, 4, 3, 2};

11 for (auto i : x) {

12 std::cout << i << ’\n’;13 }

14 std::cout << ’\n’;

15
for (auto i : y) {

16 std::cout << i << ’\n’;

17 }

18 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 268

Section 2.5.5

Template Specialization

Copyright c
2015, 2016

Michael D.
Adams

269C++ Version: 2016-01-18

Template
Specialization

sometimes can be desirable to provide customized version of template for

certain choices of template parameters

customized version of templates can be specified through language

feature known as template specialization

two kinds of specialization: explicit and partial

explicit specialization (less formally known as full specialization):

customized version of template where all template parameters are fixed

partial specialization: customized version of template where only some

of template parameters are fixed

class templates, function templates, and variable templates can all be

specialized

alias templates cannot be specialized

class templates and variable templates can be partially or explicitly

specialized

function templates can only be explicitly specialized (not partially)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 270

10
11

1213

14
15

16

19

20

27

"");

28

29

Explicitly-Specialized
Class

Template: is_void

1
template <class T>

2 struct is_void

3
{static constexpr bool value = false;};

4

5
template <>

6 struct is_void<void>

7
{static constexpr bool value = true;};

8

9
template <>

struct is_void<const void>

{static constexpr bool value = true;};

template <>

struct is_void<volatile void>

{static constexpr bool value = true;};

17
template <>

18 struct is_void<const volatile void>

{static constexpr bool value = true;};

21 static_assert(is_void<int>::value == false, "");

22 static_assert(is_void<double*>::value == false, "");

23 static_assert(is_void<void>::value == true, "");

24 static_assert(is_void<const void>::value == true, "");

25

int main() {}

volatile void>::value

static_assert(is_void<volatile void>::value == true , "");

== true,26 static_assert(is_void<const

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 271

Partially-Specialized
Class

Template

1

13

14

19

20

21

22

23

24

25 }

#include <iostream>

2

3
// unspecialized version

4
template <typename T, typename V>

5
struct Widget {

6
Widget() {std::cout << "unspecialized\n";}

7

};

8

9
// partial specialization

10
template <typename T>

11
struct Widget<int, T> {

12
Widget() {std::cout << "partial\n";}};

15
// explicit specialization

16
template <>

17
struct Widget<int, int> {

18
Widget() {std::cout << "explicit\n";}

};

int main() {

Widget<double, int> w1; // unspecialized verion

Widget<int, double> w2; // partial specialization

Widget<int, int> w3; // explicit specialization

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 272

Partially-Specialized
Class

Template: std::vector

std::vector class employs specialization

consider vector of elements of type T

most natural way to store elements is as array of T

if T is bool, such an approach makes very inefficient use of memory,

since each bool object requires one byte of storage

if T is bool, would be much more memory-efficient to use array of, say,

unsigned char and pack multiple bool objects
in
each byte

std::vector accomplishes this by providing (partial) specialization for

case that T is bool

declaration of base template for std::vector and its partial

specialization for case when T is bool are as follows:

template <class T, class Alloc = allocator<T>>

class vector; // unspecialized version

template <class Alloc>class vector<bool, Alloc>; // partial specialization

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 273

Explicitly-Specialized Function Template: printPointee

1

9 }
10

#include <iostream>

2

3
// unspecialized version

4
template <class T>

5
typename std::ostream& printPointee(

6

typename std::ostream& out, const T* p)

7 {

8

11
// specialization

12
template <>

13
typename std::ostream& printPointee<void>(

14
typename std::ostream& out, const void* p)

15 {

return out << *p << ’\n’;

17

}

18

16
return out << *static_cast<const char*>(p)19

int main() {

20 int i = 42;

21
const int* ip = &i;

22 char c = ’A’;23

const void* vp = &c;

24 printPointee(std::cout, ip);

25 printPointee(std::cout, vp);

26 }

<< ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 274

Explicitly-Specialized Variable Template: is_void_v

template <class T>1

2
constexpr bool is_void_v = false;

3

4
template <>

5
constexpr bool is_void_v<void> = true;

6

7
template <>

8
constexpr bool is_void_v<const void> = true;

9

10 template <>

11 constexpr bool is_void_v<volatile void> = true;

12

13 template <>

14 constexpr bool is_void_v<const volatile void> = true;

15

16 static_assert(is_void_v<int> == false, "");

17 static_assert(is_void_v<double*> == false, "");

18 static_assert(is_void_v<void> == true, "");

19 static_assert(is_void_v<const void> == true, "");

20 static_assert(is_void_v<volatile void> == true , "");

21 static_assert(is_void_v<const volatile void> == true, "");
22

int main() {}23

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 275

Explicitly-Specialized Variable Template:

10

static_assert(factorial<5> ==

11

12

static_assert(factorial<12> == 479’001’600,

13

14 }

1
template <unsigned long long N>

2
constexpr unsigned long long

3 factorial = N * factorial<N - 1>;

4

5
template <>

6
constexpr unsigned long long

7 factorial<0> = 1;

8

9 int main() {

"factorial<5> failed");"factorial<12> failed");

120,

factorial

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 276

Partially-Specialized Variable Template: quotient

1

10 std::numeric_limits<int>::min() :
11

std::numeric_limits<int>::max();

12

13

static_assert(quotient<4, 2> == 2, "");

14

static_assert(quotient<5, 3> == "");

15

static_assert(quotient<4, 0> ==16

std::numeric_limits<int>::max(), "");

17 static_assert(quotient<-4,
18

std::numeric_limits<int>::min(), "");
19

20

#include <limits>

2

3
// unspecialized version

4
template <int X, int Y>

5
constexpr int quotient = X / Y;

6

7
// partial specialization (which prevents division by zero)

8
template <int X>

9
constexpr int quotient<X, 0> = (X < 0) ?

1,

0> ==

int main() {}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 277

Section 2.5.6

Variadic Templates

Copyright c
2015, 2016

Michael D.
Adams

278C++ Version: 2016-01-18

Variadic Templates

language provides ability to specify template that can take variable

number of arguments

template that can take variable number of arguments called variadic

template

alias templates, class templates, function templates, and variable

templates may be variadic

variable number of arguments specified by using what is called parameter

pack

parameter pack is parameter that accepts (i.e., is placeholder for) zero or

more arguments (of same kind)

parameter pack used in parameter list of template to allow to variable

number of template parameters

ellipsis (i.e., “...”) is used in various contexts relating to parameter packs

ellipsis after designator for kind of template argument in template

parameter list designates argument is parameter pack

ellipsis after parameter pack parameter expands parameter pack in

context-sensitive manner

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 279

11

12

13

14

15

16
17

}

1819

20
21

22

23

24

25

26

27

28 }

Variadic Template Examples

1
#include <tuple>

2

3
// variadic alias template

4
template <class... T>

5
using My_tuple = std::tuple<bool, T...>;

6

7
// variadic class template

8
template <int... Values>

9

class Integer_sequence {

10 // ...

};

// variadic function template

template <class... Ts>

void print(const Ts&... values) {

// ...

// variadic variable template

template <typename T, T... Values>constexpr T array[] = {Values...};

int main() {

Integer_sequence<1, 3, 4, 2> x;

auto a = array<int, 1, 2, 4, 8>;

My_tuple<int, double> t(true, 42, 42.0);

print(1’000’000, 1, 43.2, "Hello");

Copyright c
2015, 2016

Michael D.
Adams

C++ 280Version: 2016-01-18

Parameter Pack Expansion

parameter pack expansion allowed in following contexts:

inside parentheses of function call operator

in template argument list

in function parameter list

in template parameter list

base class specifiers in class declaration

member initializer lists

braced initializer lists

lambda captures

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 281

The
sizeof... Operator

sizeof... operator yields number of elements in parameter pack

example:

template <int... Values>constexpr int num_parms

= sizeof...(Values);

static_assert(num_parms<1, 2, 3> == 3, "");

static_assert(num_parms<> == 0, "");

example:

#include <cassert>template <typename... Ts>

int number_of_arguments(const Ts&... args) {

return sizeof...(args);

}

int main() {

assert(number_of_arguments(1, 2, 3) == 3);assert(number_of_arguments() == 0);}

Copyright c
2015, 2016

Michael D.
Adams

282C++ Version: 2016-01-18

Variadic Function Template: maximum

#include <iostream>1

2
#include <type_traits>

3
#include <string>

4

5
using namespace std::literals;

67
template <typename T1, typename T2>

8
typename std::common_type_t<const T1&, const T2&>

9 maximum(const T1 &a, const T2 &b) {

10 return a > b ? a : b;

11 }

12

13 template <typename T1, typename T2, typename ... Args>14 typename std::common_type_t<const T1&, const T2&,

...>15
const Args&16 maximum(const T1 &a, const T2 &b, const Args& ... args)

{

17
return maximum(maximum(a, b), args...);

18

}
19

20 int main() {

21 std::cout << maximum(1,2,3,4, -1.4) << ’\n’;

22 std::cout << maximum(-1’000’000L, -42L, 10, 42) <<

23
std::cout << maximum("apple"s, "zebra"s, "c++"s) << ’\n’;

24 }

’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 283

Variadic Function Template: print

16

}

17

18

19

print(std::cout,

20

std::left, std::setfill(’x’),21

std::setw(10),22

std::setw(10),

23 }

1 #include <iostream>2

#include <iomanip>

3

4
template <typename T>

5

6

std::ostream& print(std::ostream& out,

return out << value;

7 }

8

9
template <typename T, typename... Args>

10

std::ostream& print(std::ostream& out,
11

Args... args) {

12 if (!(out << value)) {

13 return out;14

}

15
return print(out, args...);

int main() {

"Hello, World!\n",1234, ’ ’,

3.1415, ’\n’);

const T&

const T&

value) {

value,

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 284

Variadic Function Template With Template Template

Parameter: print_container

1 #include <iostream>2

#include <vector>3

#include <string>
4

#include <set>

5

6
template <template <typename, typename...>

7

class ContainerType, typename ValueType, typename... Args>
8

bool print_container(const ContainerType<ValueType, Args...>&

c) {

for (auto i = c.begin(); i != c.end();) {

std::cout << *i;

if (++i != c.end()) {std::cout << ’ ’;}

9

10

11

12

std::cout << ’\n’;

return bool(std::cout);

13

}14

15
16

}
17

18 int main() {

19 std::vector<int> vi{1,std::set<int> si{5, 4,

3, 2, 1};

2, 3, 4, 5};

20

21 std::set<std::string> ss{"world", "hello"};

22

print_container(vi);23

print_container(si);

24 print_container(ss);

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 285

19

2021

22
23

Integer_sequence<T, Values...>::values_[sizeof...(Values)];

24

25

26

27

28

29 }

Variadic Class Template: Integer_sequence

1 #include <iostream>2

#include <cstdlib>

3

4
template <class T, T... Values>

5

class Integer_sequence {

6
public:

7

using value_type = T;

8
using const_iterator = const T*;

9
constexpr std::size_t size() const

10 {return sizeof...(Values);}

11
constexpr T operator[](int i) const {return values_[i];}

12

constexpr const_iterator begin() const

13 {return &values_[0];}

14
constexpr const_iterator end() const

15 {return &values_[size()];}

16
private:

17

static constexpr T values_[sizeof...(Values)] =

18 {Values...};};

template <class T, T... Values>constexpr T

int main() {

Integer_sequence<std::size_t, 1, 2, 4, 8> seq;std::cout << seq.size() << ’\n’ << seq[0] << ’\n’;for (auto i : seq) {std::cout << i << ’\n’;}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 286

Variadic Variable Template: int_array

1 #include <iostream>

2

3
template <int... Args>

4
constexpr int int_array[] = {Args...};

5

6 int main() {

7 for (auto i : int_array<1,2,4,8>) {

8 std::cout << i << ’\n’;

9 }

10 }

Copyright c
2015, 2016

Michael D.
Adams

287C++ Version: 2016-01-18

using My_tuple = std::tuple<bool, Ts...>;

7

8 int main() {

"meaning of

9

10

11

12

13

My_tuple<int,

14 }

template <class... Ts>

6

Variadic Alias Template: My_tuple

1 #include <iostream>2

#include <string>
3

#include <tuple>

4

5

std::string> t(true,

life");

std::cout << std::get<0>(t) << ’<< std::get<1>(t) <<

’ ’

<< std::get<2>(t) <<

’

’\n’;

42,

Copyright c
2015, 2016

Michael D.
Adams

288C++ Version: 2016-01-18

Section 2.5.7

Miscellany

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 289

Overload Resolution and Substitution Failure

when creating candidate set (of functions) for overload resolution, some or

all candidates of that set may be result of instantiated templates with

template arguments substituted for corresponding template parameters

process of substituting template arguments for corresponding template

parameters can lead to invalid code, known as substitution failure

substitution failure not treated as error

instead, substitution failure simply causes overload to be removed from

candidate set

this behavior often referred to by term “substitution failure is not an error

(SFINAE)”

if substitution failure were treated as error, this would place heavy burden

on programmer to avoid compile errors when using function templates

SFINAE behavior often exploited in template metaprogramming

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 290

Some Kinds
of

Substitution Failures

attempting to instantiate pack expansion containing multiple parameter

packs of differing lengths

attempting to create array with element type that is void, function type,

reference type, or abstract class type

attempting to create array with size that is zero or negative

attempting to use type that is not class or enumeration type in qualified

name

attempting to use type in nested name specifier of qualified ID, when type

does not contain specified member, or

specified member is not type where type is required

specified member is not template where template is required

specified member is not non-type where non-type is required

attempting to create pointer to reference type

attempting to create reference to void

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 291

Some Kinds of
Substitution Failures (Continued)

attempting to create pointer to member of T when T is not class type

attempting to give invalid type to non-type template parameter

attempting to perform invalid conversion in either template argument

expression, or expression used in function declaration

attempting to create function type in which parameter has type of void,

or in which return type is function type or array type

attempting to create function type in which parameter type or return type

is abstract class

Copyright c
2015, 2016

Michael D.
Adams

C++ 292Version: 2016-01-18

std::enable_if
and

std::enable_if_t

to make SFINAE more convenient to exploit, class template

std::enable_if and alias template std::enable_if_t are provided

declaration of class template enable_if:

template <bool B, class T = void>

struct enable_if;

if B is true, class has member type type defined as T; otherwise, class

has no type member

possible implementation of enable_if:

template <bool B, class T = void>

2 struct enable_if {};

3

1

4 template <class T>

5 struct enable_if<true, T> {

6
typedef T type;

7 };

declaration of alias template enable_if_t:

template <bool B, class T = void>

using enable_if_t = typename enable_if<B, T>::type;

if enable_if_t is used with its first parameter as false, substitution

failure will result

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 293

SFINAE
Example

9

10
11

}
12

13

14

15

std::enable_if_t<std::is_floating_point<T>::value, T>

16

mult_by_pow_2(T

17

18
19

}

20

21

22

23

24

25

26 }

1 #include <iostream>2

#include <type_traits>
3

#include <cmath>

4

5
// integral version (uses left shift)

6
template <class T>

7 std::enable_if_t<std::is_integral<T>::value, T>

8 mult_by_pow_2(T x, unsigned int n) {

std::cerr << "integral version\n";return x << n;

// floating-point version (uses pow)

template <class T>

x, unsigned int n) {

std::cerr << "floating-point version\n";return x * std::pow(2.0, n);

int main() {

std::cout << mult_by_pow_2(2, 2) << ’\n’;// will call integral version

std::cout << mult_by_pow_2(0.5, 4) << ’\n’;// will call floating-point version

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 294

Section 2.5.8

References

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 295

References I

1 D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.

Addison Wesley, 2002.

2 P. Sommerlad. Variadic and variable templates.

Overload, 126:14–17, Apr. 2015.

Available online at http://accu.org/index.php/journals/2087.

Copyright c
2015, 2016

Michael D.
Adams

296C++ Version: 2016-01-18

Talks I

1 Peter Sommerlad. Variadic Templates in C++11/C++14: An Introduction,

CppCon, Bellevue, WA, USA, Sept 19–25, 2015.

Copyright c
2015, 2016

Michael D.
Adams

297C++ Version: 2016-01-18

Section 2.6

Lambda Expressions

Copyright c
2015, 2016

Michael D.
Adams

298C++ Version: 2016-01-18

Motivation for Lambda Expressions

functor classes extremely useful, especially for generic programming

writing definitions of functor classes somewhat tedious, especially if many

such classes

functor classes all have same general structure (i.e., constructor,

function-call operator, zero or more data members)

would be nice if functor could be created without need to explicitly write

functor-class definition

lambda expressions provide compact notation for creating functors

convenience feature (not fundamentally anything new that can be done

with lambda expressions that could not already have been done without

them)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 299

Lambda Expressions

lambda expression consists of:

1 introducer: capture list in square brackets

2 declarator: parameter list in parentheses followed by return type using

trailing return-type syntax

3 compound statement in brace brackets

capture list specifies objects to be captured as data members

declarator specifies parameter list and return type of function-call operator

compound statement specifies body of function-call operator

if no declarator specified, defaults to ()

if no return type specified, defaults to type of expression in return

statement, or void if no return statement

when evaluated, lambda expression yields object called closure (which is

essentially a functor)

examples:

[](double x)->int{return floor(x);}[](int x, int y){return x < y;}

[]{std::cout << "Hello, World!\n";}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 300

Lambda Expressions (Continued)

closure object is unnamed (temporary object)

closure type is unnamed

operator() is always inline

operator() is const member function unless mutable keyword used

if no capture, closure type provides conversion function to pointer to

function having same parameter and return types as closure type’s

function call operator; value returned is address of function that, when

invoked, has same effect as invoking closure type’s function call operator

(function pointer not tied to lifetime of closure object)

although operator() in closure very similar to case of normal functor,

not everything same (e.g., operator() member in closure type cannot

access this pointer for closure type)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 301

Hello
World Program Revisited

1

10

11 hello();

12 }

#include <iostream>

2

3 int main() {

4 []{std::cout << "Hello, World!\n";}();

5 }

1 #include <iostream>

2

3 struct Hello {

4
void operator()()

5

std::cout <<

};

8

9 int main() {

Hello hello;

const {

"Hello, World!\n";

6 }

7

Copyright c
2015, 2016

Michael D.
Adams

302C++ Version: 2016-01-18

10

11

std::vector<int>

12

std::sort(v.begin(), v.end(), abs_less());

13

14 }

Comparison Functor
Example

1 #include <iostream>2

#include <algorithm>
3

#include <cstdlib>

4

5 int main() {

6 std::vector<int> v{-3, 3, 4, 0, -2, -1, 2, 1, -4};

7 std::sort(v.begin(), v.end(),

8
[](int x, int y) {return abs(x) < abs(y);});

9 for (auto x : v) std::cout << x << ’\n’;

10 }

1 #include <iostream>2

#include <algorithm>
3

#include <cstdlib>

4

5 struct abs_less {

6
bool operator()(int x, int y) const

7
{return abs(x) < abs(y);}

8 };

9

int main() {

for (auto x : v)

v{-3, 3, 4, 0, -2, -1, 2, 1, -4};

std::cout << x << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 303

Capturing Objects

locals only available if captured; non-locals always available

can capture by value or by reference

different locals can be captured differently

can specify default capture mode

can explicitly list objects to be captured or not

might be wise to explicitly list all objects to be captured (when practical) to

avoid capturing objects accidentally (e.g., due to typos)

to capture class members within member function, capture this

capture of this must be done by value

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 304

std::transform

(unary version of) std::transform applies given (unary) operator to

each element in range specified by pair of iterators and writes result to

location specified by another iterator

definition of std::transform would typically resemble:

template <class InputIterator,

class UnaryOperator>

class OutputIterator,OutputIterator transform(InputIterator first,InputIterator last, OutputIterator result,

UnaryOperator op) {

while (first != last) {

*result = op(*first);

++result;

++first;

}

return result;}

Copyright c
2015, 2016

Michael D.
Adams

305C++ Version: 2016-01-18

Modulus Example

11

12

13

14

15

16

17

18 }

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5 int main() {

6 int m = 2;

7 std::vector<int> v{0, 1, 2, 3};

8 std::transform(v.begin(), v.end(), v.begin(),

9 [m](int x){return x % m;});

10 for (auto x : v) std::cout << x << ’\n’;

11 }

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5 class mod {

6
public:

7

mod(int m_) :8

int operator()(int

9
private:

10

int m;

};

int main() {

int m = 2;

std::vector<int> v{0, 1, 2, 3};

std::transform(v.begin(), v.end(), v.begin(), mod(m));

for (auto x : v) std::cout << x << ’\n’;

m(m_) {}

x) const {return x % m;}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 306

Modulus
Example:

Without
Lambda Expression

11

12

13

14

15

std::vector<int>

16

std::transform(v.begin(), v.end(), v.begin(), mod(m));17

18 }

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5 class mod {

6
public:

7

mod(int m_) : m(m_) {}

8
int operator()(int x) const {return x % m;}

9

private:
10

int m;

};

int main() {

int m = 2;

v{0, 1, 2, 3};

for (auto x : v) std::cout << x << ’\n’;

approximately 8.5 lines of code to generate functor

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 307

Modulus
Example:

With Lambda
Expression

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5 int main() {

6 int m = 2;

7 std::vector<int> v{0, 1, 2, 3};

8 std::transform(v.begin(), v.end(), v.begin(),
9

[m](int x){return x % m;});

10 for (auto x : v) std::cout << x << ’\n’;

11 }

m captured by value

approximately 0.5 lines of code to generate functor

Copyright c
2015, 2016

Michael D.
Adams

C++ 308Version: 2016-01-18

specified by pair of iterators

std::for_each

std::for_each applies given function/functor to each element in range

definition of std::for_each would typically resemble:

template<class InputIterator,

InputIterator last,

while

class Function>

Function for_each(InputIterator first,

Function func) {

(first != last) {

func(*first);

++first;}

return move(func);

}

Copyright c
2015, 2016

Michael D.
Adams

309C++ Version: 2016-01-18

Product Example

11

12

13

14

std::vector<int>

15

16

std::for_each(v.begin(), v.end(), cum_prod(prod));17

18 }

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5 int main() {

6 std::vector<int> v{2, 3, 4};

7
int prod = 1;

8 std::for_each(v.begin(), v.end(),

9 [&prod](int x)->void{prod

*=10
std::cout << prod <<

x;});

’\n’;

11 }

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5
class cum_prod {

6
public:

7

cum_prod(int& prod_) : prod(prod_) {}

8
void operator()(int x) const {prod *= x;}

9

private:

10
int& prod;

};

int main() {

v{2, 3, 4};

int prod = 1;

<<std::cout << prod ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 310

Product
Example:

Without
Lambda Expression

11

12

13

14

15

16

17

18 }

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5
class cum_prod {

6
public:

7

cum_prod(int& prod_) : prod(prod_) {}

8
void operator()(int x) const {prod *= x;}

9

private:

10
int& prod;

};

int main() {

std::vector<int> v{2, 3, 4};

int prod = 1;

std::for_each(v.begin(), v.end(), cum_prod(prod));std::cout << prod << ’\n’;

approximately 8.5 lines of code to generate functor

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 311

int main() {

Product Example: With Lambda Expression

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5

6 std::vector<int> v{2, 3, 4};

7
int prod = 1;

8 std::for_each(v.begin(), v.end(),

9 [&prod](int x)->void{prod *= x;});

10
std::cout << prod << ’\n’;

11 }

prod captured by reference

approximately 1 line of code to generate functor

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 312

More Variations on Capture

double a = 2.14;

double b = 3.14;

double c = 42.0;

// capture all objects by reference (i.e., a, b, and c)

[&](double x, double y){return a * x + b * y + c;}

// capture all objects by value (i.e., a, b, and c)

[=](double x, double y){return a * x + b * y + c;}

// capture all objects by value, except a

// which is captured by reference

[=,&a](double x, double y){return a * x + b * y + c;}

// capture all objects by reference, except a

// which is captured by value

[&,a](double x, double y){return a * x + b * y + c;}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 313

Generalized Lambda Capture

can specify name for captured object in closure type

int a = 1;

auto f = [x = a]() {return x;};

to add arbitrary new state to closure type)

std::vector<int>auto f

=

can capture result of expression (e.g., to perform move instead of copy or

v(1000,

[v = std::move(v)]() ->

1);

const std::vector<int>& {return v;};

Copyright c
2015, 2016

Michael D.
Adams

314C++ Version: 2016-01-18

Generalized Lambda Capture Example

1 #include <iostream>2

3 int main() {

4
int x = 0;

5
int y = 1;

6 auto f = [&count =7 return count

+= inc;

8
};

’ ’;9 std::cout << f()

10 std::cout << f()

11 }

12

13 // output: 2 4

<<

<<

x, inc =

’\n’;

y + 1](){

Copyright c
2015, 2016

Michael D.
Adams

315C++ Version: 2016-01-18

Generic
Lambda Expressions

can allow compiler to deduce type of lambda function parameters

generates closure type with templated function-call operator

one template type parameter for each occurrence of auto in lambda

expression’s parameter declaration clause

Copyright c
2015, 2016

Michael D.
Adams

316C++ Version: 2016-01-18

Generic Lambda Expression Example
[Generic]

#include <iostream>1

2
#include <complex>

3
#include <string>

4

5 int main() {

6
using namespace std::literals;

7
auto add = [](auto x, auto y) {return x + y;};

8 std::cout << add(1, 2) << ’ ’ << add(1.0, 2.0) << ’ ’

9 << add(1.0, 2.0i) << ’ ’ << add("Jell"s, "o"s) << ’\n’;10 }

1 #include <iostream>2
#include <complex>

3
#include <string>

4

5 struct Add {

6
template <class T, class U>

7
auto operator()(T x, U y) {return x + y;};

8 };

910 int main() {

11
using namespace std::literals;

12 Add add;13 std::cout << add(1, 2) << ’ ’ << add(1.0, 2.0) << ’ ’

14 << add(1.0, 2.0i) << ’ ’ << add("Jell"s, "o"s) << ’\n’;15 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 317

12 }

Generic Lambda Expression Example [Convenience]

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5 int main() {

6 std::vector<int> v{0, 1, 2, 3, 4, 5, 6, 7};

7
// sort elements of vector in descending order

8 std::sort(v.begin(), v.end(),

9
[](auto i, auto j) {return i > j;});

10 std::for_each(v.begin(), v.end(),

11 [](auto i) {std::cout << i << ’\n’;});

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 318

Dealing With Unnamed Types

fact that closure types unnamed causes complications when need arises

to refer to closure type

helpful language features: auto, decltype

helpful library features: std::function

closures can be stored using auto or std::function

closures that do not capture can be “stored” by assigning to function

pointer

Copyright c
2015, 2016

Michael D.
Adams

319C++ Version: 2016-01-18

Using auto, decltype, and
std::function

#include <iostream>1

2 #include <functional>

3

4 std::function<double(double)> linear(double a, double b) {

5 return [=](double x){return a * x + b;};

6 }

7

8 int main() {

9
// type of f is std::function<double(double)>

10 auto f = linear(2.0, -1.0);

11
// g has closure type

12
auto g = [](double x){return 2.0 * x - 1.0;};

13 double (*u)(double) = [](double x){return 2.0 * x - 1.0;};

// h has same type as g

decltype(g) h = g;

for (double x = 0.0; x < 10.0; x += 1.0) {

std::cout << x << ’ ’ << f(x) << ’ ’ << g(x) <<

’ ’ << h(x) << (*u)(x) << ’\n’;

14

15

16

17

18

19 }

}

applying function-call operator to f much slower than in case of g and h

when std::function used, inlining of called function probably not

possible

when functor used directly (via function-call operator) inlining is very likely

prefer auto over std::function for storing closures

20

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 320

operator()
as Non-const Member

1 #include <iostream>

2

3 int main()

4 {

5 int count = 5;

6 // Must use mutable in order to be able to

7
// modify count member.

8
auto get_count = [count]() mutable -> int {

return count++;};9
10

11

12 int c;

13
while ((c = get_count()) < 10) {

14 std::cout << c << ’\n’;

15 }

16 }

operator() is declared as const member function unless mutable

keyword used

const member function cannot change (non-static) data members

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 321

Comparison Functors for Containers

#include <iostream>

std::set<int*, decltype(cmp)> s(cmp);

1

2 #include <vector>

3 #include <set>

4

5 int main() {

6
// The following two lines are the only important ones:7
auto cmp = [](int* x, int* y){return *x < *y;};

8

9

10 // Just for something to do:

// Print the elements of v in sorted order with

// duplicates removed.

std::vector<int> v = {4, 1, 3, 2, 1, 1, 1, 1};

for (auto& x : v) {

11

12

13

14

15 s.insert(&x);

for (auto x : s) {

std::cout << *x << ’\n’;

16

}

17

18

19 }

}

note that s is not default constructed

20

since closure types not default constructible, following would fail:

std::set<int*, decltype(cmp)> s;

note use of decltype in order to specify type of functor

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 322

What Could Possibly
Go Wrong?

1 #include <iostream>2

#include <vector>3

#include <functional>

4

5

std::function<int(int)> func;

7

8 void do_stuff()

9 {

10 int modulus = 10000;

func = [&](int x){return x % modulus;};

for (auto x : vec) {

std::cout << func(x) << ’\n’;

11

12

13

14 }
15

}

16

17 int main()

18 {

19 do_stuff();

for (auto x : vec) {

std::cout << func(x) << ’\n’;

20

21

22

}

23 }

above code has very serious bug; what is it?

std::vector<int> vec{2000, 4000, 6000, 8000, 10000};

6

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 323

Dangling
References

if some objects captured by reference, closure can hold dangling

references

responsibility of programmer to avoid such problems

if will not cause performance issues, may be advisable to capture by value

(to avoid problem of dangling references)

dangling-reference example:

#include <iostream>1

2 #include <functional>

3

4 std::function<double(double)> linear(double a, double b) {

5 return [&](double x){return a * x + b;};

6 }

7

8 int main() {

9 auto f = linear(2.0, -1.0);

10
// bad things will happen here

11 std::cout << f(1.0) << ’\n’;

12 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 324

Triangle Scan Conversion

declaration:

template <class T,

in SPLEL software, triangle scan conversion performed by

scan_triangle template function

void scan_triangle(T a_x,

T c_x,

class F>

T c_y,

T a_y,unsigned mask, T b_x,

scan_line is functor to handle single horizontal scan within triangle

scan_line has signature:

void scan_line(T y,

T b_y,

F scan_line);

unsigned left_mask,

T x_min,unsigned mid_mask); T x_max,

unsigned right_mask,

Copyright c
2015, 2016

Michael D.
Adams

325C++ Version: 2016-01-18

Section 2.6.1

References

Copyright c
2015, 2016

Michael D.
Adams

326C++ Version: 2016-01-18

Talks I

1
Herb Sutter. Lambdas, Lambdas Everywhere, Professional Developers

Conference (PDC), Redmond, WA, USA, October 27–29, 2010.

2
Herb Sutter. C++0x Lambda Functions, Northwest C++ Users’ Group

(NWCPP), Redmond, WA, USA, May 18, 2011.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 327

Section 2.7

Classes and Inheritance

Copyright c
2015, 2016

Michael D.
Adams

328C++ Version: 2016-01-18

Section 2.7.1

Derived Classes and Class Hierarchies

Copyright c
2015, 2016

Michael D.
Adams

329C++ Version: 2016-01-18

Derived Classes

sometimes, want to express commonality between classes

want to create new class from existing class by adding new members or

replacing (i.e., hiding/overriding) existing members

can be achieved through language feature known as inheritance

generate new class with all members of already existing class, excluding

special member functions (i.e., constructors, assignment operators, and

destructor)

new class called derived class and original class called base class

derived class said to inherit from base class

can add new members (not in base class) to derived class

can hide or override member functions from base class with new version

syntax for specifying derived class:

class derived class : base classspecifiers

derived class is name
of derived class; base classspecifiers provide

base-class information

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 330

Derived
Classes

(Continued)

can more clearly express intent by explicitly identifying relationship

between classes

can facilitate code reuse by leverage existing code

interface inheritance: allow different derived classes to be used

interchangeably through interface provided by common base class

implementation inheritance: save implementation effort by sharing

capabilities provided by base class

Copyright c
2015, 2016

Michael D.
Adams

331C++ Version: 2016-01-18

Person Class

1

10

11

12

13

14

15

16

#include <string>

2

3 class Person {

4
public:

5

Person(const std::string& family_name,
6

const std::string& given_name) :

7
family_name_(family_name), given_name_(given_name) {}

8
std::string family_name() const {return family_name_;}

9
std::string given_name() const {return given_name_;}

std::string full_name() const

{return family_name_ + ", " + given_name_;}

// ...

private:

std::string family_name_;

std::string given_name_;

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 332

18

Student Class Without Inheritance

1
#include <string>

2

3 class Student {

4
public:

5

Student(const std::string& family_name,
6

const std::string& given_name) :

7
family_name_(family_name), given_name_(given_name) {}

8 // NEW

9
std::string family_name() const {return family_name_;}

10
std::string given_name() const {return given_name_;}

11
std::string full_name() const

12
{return family_name_ + ", " + given_name_;}

13
std::string student_id() {return student_id_;} // NEW

14
private:

15
std::string family_name_;

16
std::string given_name_;

17
std::string student_id_; // NEW

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 333

Student Class With Inheritance

1 // include definition of Person class here

2

3
class Student : public Person {

4
public:

5
Student(const std::string& family_name,

6

const std::string& given_name,

7
const std::string& student_id) :

8 Person(family_name, given_name),

9 student_id_(student_id) {}

10

private:std::string student_id_;

};

12

13

std::string student_id() {return student_id_;}

11

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 334

Complete Inheritance Example

1

10

11

12

13

14

15
16

17

#include <string>

2

3 class Person {

4
public:

5

Person(const std::string& family_name,
6

const std::string& given_name) :

7
family_name_(family_name), given_name_(given_name) {}

8
std::string family_name() const {return family_name_;}

9
std::string given_name() const {return given_name_;}

std::string full_name() const

{return family_name_ + ", " + given_name_;}

// ... (including virtual destructor)

private:

std::string family_name_;

std::string given_name_;

};

18
class Student : public Person {

19
public:

20

Student(const std::string& family_name,
21

const std::string& given_name,

22
const std::string& student_id) :

23
Person(family_name, given_name),

24 student_id_(student_id) {}

25
std::string student_id() {return student_id_;}

26

private:
27

std::string student_id_;

28 };

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 335

Class Hierarchies

inheritance relationships between classes form what is called class

hierarchy

often class hierarchy represented by directed (acyclic) graph, where nodes

correspond to classes and edges correspond to inheritance relationships

class definitions:

class A { /* ... */ };

class B : public A { /* ... */ };

class C : public A { /* ... */ };

class D : public B { /* ... */ };

class E : public B { /* ... */ };

inheritance diagram:

B ED C

A

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 336

Class
Hierarchy

Example

class definitions:

class Person { /* ... */ };

class Employee : public Person { /* ... */ };

class Student : public Person { /* ... */ };

class Alumnus : public Person { /* ... */ };

class Faculty : public Employee { /* ... */ };

class Staff : public Employee { /* ... */ };

class Grad : public Student { /* ... */ };

class Undergrad : public Student { /* ... */ };

inheritance diagram:

StudentPerson

Employee Alumnus

Faculty Undergrad GradStaff

each of Employee, Student, and Alumnus is a Person; each of Faculty

and Staff is an Employee; each of Undergrad and Grad is a Student

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 337

Member Access Specifiers: protected

earlier, introduced public and private access specifiers for class

members

in context of inheritance, another access specifier becomes relevant,

namely, protected

member declared in protected section of class can only be accessed by

member functions and friends of that class; and

by member functions and friends of derived classes

protected members used to provide developers of derived classes access

to some inner workings of base class without exposing such inner

workings to everyone

usually, bad idea to use protected access for data members (for similar

reasons that using public access for data members is usually bad)

protected access usually employed for function members

Copyright c
2015, 2016

Michael D.
Adams

338C++ Version: 2016-01-18

Types
of

Inheritance

three types of inheritance with respect to access protection: public,

protected, and private

these three types of inheritance differ in terms of accessibility, in derived

class, of members inherited from base class

private parts of base class are always inaccessible in derived class,

regardless of whether public, protected, or private inheritance used

if this were not case, all access protection could simply be bypassed by

using inheritance

access specifiers for members accessible in derived class chosen as

follows:

Access Specifier in

Access Specifier in Derived Class

Public Protected Private

Base Class Inheritance Inheritance Inheritance

public public protected private

protected protected protected private

Copyright c
2015, 2016

Michael D.
Adams

339C++ Version: 2016-01-18

Types of Inheritance (Continued)

for struct, defaults to public inheritance

for class, defaults to private inheritance

public and protected/private inheritance have different use cases, as we

will see later

Copyright c
2015, 2016

Michael D.
Adams

340C++ Version: 2016-01-18

Inheritance
and Member Access

Example

10

11

12

13
14

15

16

17

18

19
20

21

22

23

24

25

26

1 class Base {

2
public:

3

void f();

4
protected:

5
void g();

6
private:

7

int x;

8 };

9

class Derived_1 : public Base {

// f is public

// g is protected

// x is not accessible from Derived_1

};

class Derived_2 : protected Base {

// f is protected

// g is protected

// x is not accessible from Derived_2

};

class Derived_3 : private Base {

// f is private

// g is private

// x is not accessible from Derived_3

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 341

17

1819

20
21

22

23

24

25

26

27

28 }

Public Inheritance Example

1 class Base {

2
public:

3 void func_1();4

protected:

5 void func_2();

6
private:

7 int x_;

8 };

9

10
class Derived : public Base {

11
public:

12 void func_3() {

13 func_1(); // OK

14 func_2(); // OK

15 x_ = 0; // ERROR: inaccessible

16 }

};

struct Widget : public Derived {

void func_4() { func_2(); } // OK

};

int main() {

Derived d;

d.func_1(); // OK

d.func_2(); // ERROR: inaccessible

d.x_ = 0; // ERROR: inaccessible

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 342

17

1819

20
21

22

23

24

25

26

27

d.func_2();

d.func_1();

28 }

Protected Inheritance Example

1 class Base {

2
public:

3

void func_1();4

protected:

5 void func_2();

6
private:

7

int x_;

8 };

9

10 class Derived

public:

12

:

void func_3() {

13

protected Base {

11

func_1(); // OK

14 func_2();

x_ = 0;

};

struct Widget :

// OK

// ERROR: inaccessible

16 }

15

public Derived {

void func_4() { func_2(); } // OK

};

int main() {

Derived d; // OK: defaulted constructor is public

// ERROR: inaccessible

// ERROR: inaccessible

d.x_ = 0; // ERROR: inaccessible

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 343

Private Inheritance Example

class Base {1

2
public:

3 void func_1();

4
protected:

5 void func_2();

6
private:

7 int x_;

8 };

9

10 class Derived : private Base {

11 public:

12 void func_3() {

13 func_1(); // OK

14 func_2(); // OK

15 x_ = 0; // ERROR: inaccessible

16 }

17 };
18

19 struct Widget : public Derived {

20 void func_4() { func_2(); } // ERROR: inaccessible
21

};

22

23 int main() {

24
Derived d; // OK: defaulted constructor is public

25 d.func_1(); // ERROR: inaccessible

26 d.func_2(); // ERROR: inaccessible

27 d.x_ = 0; // ERROR: inaccessible

28 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 344

Public Inheritance

public inheritance is inheritance in traditional object-oriented programming

sense

public inheritance models an is-a relationship (i.e., derived class object is

a base class object)

most common form of inheritance

inheritance relationship visible to all code

Copyright c
2015, 2016

Michael D.
Adams

345C++ Version: 2016-01-18

17

18

Public Inheritance Example

1
#include <string>

2

3 class Person {

4
public:

5

Person(const std::string& family_name, const std::string&
6

given_name) : family_name_(family_name),

7 given_name_(given_name) {}

8
std::string family_name() const

9
{return family_name_;}

10
std::string given_name() const

11
{return given_name_;}

12
std::string full_name() const

13
{return family_name_ + ", " + given_name_;}

14
private:

15
std::string family_name_;

16
std::string given_name_;

};

19
class Student : public Person {

20
public:

21

Student(const std::string& family_name, const std::string&
22

given_name, const std::string& student_id) :

23
Person(family_name, given_name), student_id_(student_id)

24
std::string student_id()

25

{return student_id_;}26

private:
27

std::string student_id_;

28 };

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 346

Protected
and

Private Inheritance

protected and private inheritance not inheritance in traditional

object-oriented programming sense (i.e., no is-a relationship)

form of implementation inheritance

implemented-in-terms-of relationship (i.e., derived class object

implemented in terms of a base class object)

in case of protected inheritance, inheritance relationship only seen by

derived classes and their friends and class itself and its friends

in case of private inheritance, inheritance relationship only seen by class

itself and its friends (not derived classes and their friends)

except in special circumstances, normally bad idea to use inheritance for

composition

one good use case for private/protected inheritance is in policy-based

design, which exploits empty base optimization (EBO)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 347

Policy-Based
Design Example:

Inefficient
Memory Usage

1 #include <mutex>

2

3
class ThreadSafePolicy {

4
public:

5

void lock() {mutex_.lock();}

6 void unlock() {mutex_.unlock();}

7
private:

8

std::mutex mutex_;

};

class ThreadUnsafePolicy {

public:void lock() {} // no-op

void unlock() {} // no-op

9

10

11

12

13

14

};

template<class ThreadSafetyPolicy>

class Widget {

ThreadSafetyPolicy policy_;//

...

15

16

17

18

19

20

};

int main() {

// w.policy_ has no data members, but

// sizeof(w.policy_) >= 1

// inefficient use of memory

21

22

23

24

Widget<ThreadUnsafePolicy> w;

25

26

27

28 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 348

9

10

11

12

13

14
15

16

Policy-Based
Design Example:

Private Inheritance
and EBO

1 #include <mutex>

2

3
class ThreadSafePolicy {

4
public:

5

void lock() {mutex_.lock();}

6 void unlock() {mutex_.unlock();}

7
private:

8 std::mutex mutex_;

};

class ThreadUnsafePolicy {

public:void lock() {} // no-op

void unlock() {} // no-op

};

17 template<class ThreadSafetyPolicy>

20

21

22

23

Widget<ThreadUnsafePolicy> w;

24

25

26 }

18
class Widget : ThreadSafetyPolicy {

19 // ...

};

int main() {

// empty-base optimization (EBO) can be applied

// no memory overhead for no-op thread-safety policy

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 349

Inheritance and Constructors

by default, constructors not inherited

often, derived class introduces new data members not in base class

since base-class constructors cannot initialize derived-class data

members, inheriting constructors from base class by default would be bad

idea (e.g., could lead to uninitialized data members)

in some cases, however, base-class constructors may be sufficient to

initialize derived-class objects

in such cases, can inherit all non-special base-class constructors with

using statement

special constructors (i.e., default, copy, and move constructors) cannot be

inherited

constructors to be inherited with using statement may still be hidden by

constructors in derived class

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 350

Inheriting Constructors Example

1

9

10

11

12

13

14

15

16

17
18

};
19

20

25 }

class Base {

2
public:

3

Base() : i_(0.0), j_(0) {}

4
Base(int i) : i_(i), j_(0) {}

5
Base(int i, int j) : i_(i), j_(j) {}

6 // ... (other non-constructor members)

7
private:

8

int i_, j_;

};

class Derived : public Base {

public:

int

// inherit non-special constructors from Base

// (default constructor not inherited)

using Base::Base;

// default constructor is implicitly declared and

// not inherited

main() {

21 Derived a;

22 // invokes non-inherited Derived::Derived()

23 Derived b(42, 42);24

// invokes inherited Base::Base(int, int)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 351

9

10

19

};
20

Inheriting Constructors Example

1 class Base {

2
public:

3

Base() : i_(0), j_(0), k_(0) {}

4
Base(int i, int j) : i_(i), j_(j), k_(0) {}

5
Base(int i, int j, int k) : i_(i), j_(j), k_(k) {}

6 // ... (other non-constructor members)

7
private:

8
int i_, j_, k_;

};

11
class Derived : public Base {

12
public:

13

// inherit non-special constructors from Base

14 // (default constructor not inherited)

15
using Base::Base;

16
// following constructor hides inherited constructor

17
Derived(int i, int j, int k) : Base(-i, -j, -k) {}

18
// no implicitly-generated default constructor

21 int main() {

22 Derived b(1, 2);23

// invokes inherited Base::Base(int, int)

24 Derived c(1, 2, 3);25

// invokes Derived::Derived(int, int, int)

26
// following would produce compile-time error:

27 // Derived a; // ERROR: no default constructor

28 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 352

Inheritance, Assignment Operators,
and

Destructors

by default, assignment operators not inherited (for similar reasons as in

case of constructors)

can inherit all non-special base-class assignment operators with using

statement

copy and move assignment operators cannot be inherited

assignment operators to be inherited with using statement may still be

hidden by assignment operators in derived class

cannot inherit destructor

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 353

11

12

13

14

15

16

17

18

19
20

};
21

22

23

24

25

26

27 }

Inheriting Assignment Operators Example

1 class Base {

2
public:

3

explicit Base(int i) : i_(i) {}

4
Base& operator=(int i) {

5 i_ = i;

6 return *this;

7 }

8 // ...

9
private:

10

int i_;

};

class Derived : public Base {

public:

// inherit non-special constructors

using Base::Base;

// inherit non-special assignment operators

using Base::operator=;

// ...

int main() {

Derived d(0);

// invokes inherited Base::Base(int)

d = 42;

// invokes inherited Base::operator=(int)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 354

Construction
and

Destruction
Order

order of construction:

1
base class objects as listed in type definition left to right

3 constructor body

during construction of object, all of its base class objects constructed first

1 destructor body

2
data members as listed in type definition top to bottom

order of destruction is exact reverse of order of construction, namely:

2
data members as listed in type definition bottom to top

3
base class objects as listed in type definition right to left

Copyright c
2015, 2016

Michael D.
Adams

355C++ Version: 2016-01-18

Order of Construction

1

2

3

4

5

6

7

8

9
10

11

20

21

22

23

24 }

#include <vector>#include <string>

class Base {

public:Base(int n) : v_(n, 0) {}

// ...

private:std::vector<char> v_;

};

12
class Derived : public Base {

13
public:

14

Derived(const std::string& s)

15 { i_ = 0; }

16 // ...

17
private:

18

std::string s_;

19 int i_;

};

int main() {

:

Derived d("hello");

Base(1024), s_(s)

construction order for Derived constructor: 1) Base class object, 2) data

member s_, 3) Derived constructor body (initializes data member i_)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 356

Hiding Base-Class
Member Functions in Derived Class

can provide new versions of member functions in derived class to hide

original functions in base class

#include <iostream>1

2

3 class Fruit {

4 public:

5
void print() const {std::cout << "fruit\n";}

6 };

7

8
class Apple : public Fruit {

9 public:

10
void print() const {std::cout << "apple\n";}

11

};

12

13 class Banana : public Fruit {

14 public:

15
void print() const {std::cout << "banana\n";}

16

};

17

18 int main() {

19 Fruit f;

20
Apple a;

21 Banana b;

22
f.print(); // calls Fruit::print

23
a.print(); // calls Apple::print

24
b.print(); // calls Banana::print

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 357

Upcasting

derived-class object always has base-class subobject

given reference or pointer to derived-class object, may want to find

reference or pointer to corresponding base-class object

upcasting: converting derived-class pointer
or

reference
to

base-class

pointer or reference

upcasting allows us to treat derived-class object as base-class object

upcasting always safe in sense that cannot result in incorrect type (since

every derived-class object is also a base-class object)

in case of public inheritance, can upcast without explicit type-cast operator

in case of protected or private inheritance, cannot upcast, except with

C-style cast (which also can bypass access protection)

example:

class Base { /* ... */ };

class Derived : public Base { /* ... */ };

void func() {

Derived d;

Base* bp = &d;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 358

Downcasting

downcasting: converting base-class pointer or reference to derived-class

pointer or reference

downcasting allows us to force base-class object to be treated as

derived-class object

downcasting is not always safe (since not every base-class object is

necessarily also derived-class object)

must only downcast when known that object actually has derived type

downcasting always requires explicit cast (static_cast for

non-polymorphic case, dynamic_cast for polymorphic case, C-style

cast for either case)

example:

class Base { /* ... (nonpolymorphic) */ };

class Derived : public Base { /* ... */ };

void func() {

Derived d;

Base* bp = &d;

Derived* dp = static_cast<Derived*>(bp);

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 359

Upcasting/Downcasting
Example

1
class Base { /* ... (nonpolymorphic) */ };

2

3
class Derived : public Base { /* ... */ };

4

5 int main() {

6 Base b;

7 Derived d;

8
Base* bp = nullptr;

9
Derived* dp = nullptr;

10
bp = &d;

11
// OK: upcast does not require explicit cast

12
dp = bp;

13

// ERROR: downcast requires explicit cast

14
dp = static_cast<Derived*>(bp);

15
// OK: downcast with explicit cast and

16
// pointer (bp) refers to Derived object

17 Base& br= d;

18
// OK: upcast does not require explicit cast

19
Derived& dr1 = *bp;

20
// ERROR: downcast requires explicit cast

21
Derived& dr2 = *static_cast<Derived*>(bp);

22
// OK: downcast with explicit cast and

23
// object (*bp) is of Derived type

24
dp = static_cast<Derived*>(&b);

25
// BUG: pointer (&b) does not refer to Derived object

26 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 360

Upcasting Example

1 class Base { /*

2

3 class Derived :

4

5 void func_1(Base& b)6

7 void func_2(Base* b)

8

9 int main() {

10 Base b;

11 Derived d;

12 func_1(b);

13 func_1(d);

14 func_2(&b);

15 func_2(&d);

16 }

... */ };

public Base { /*

{ /* ...

{ /* ...

... */

*/ }

*/ }

};

// OK: Derived& upcast to Base&

// OK: Derived* upcast to Base*

Copyright c
2015, 2016

Michael D.
Adams

361C++ Version: 2016-01-18

20

}

21

22

23

242526

27

28 }

293031

32

3334

35 }

Nonpolymorphic
Behavior

1 #include <iostream>2 #include <string>

3

4 class Person {

5 public:6 Person(const std::string& family, const std::string& given) :

7 family_(family), given_(given) {}

8 void print() const {std::cout << "person: " << family_ << ’,’ << given_ << ’\n’;}

9 protected:

10 std::string family_; // family name

11 std::string given_; // given name

12 };

13

14 class Student : public Person {

15 public:16 Student(const std::string& family, const std::string& given,17 const std::string& id) : Person(family, given), id_(id) {}

18 void print() const {

19 std::cout << "student: " << family_ << ’,’ << given_ << ’,’ << id_ << ’\n’;private:

std::string id_; // student ID

};

void processPerson(const Person& p) {

p.print(); // always calls Person::print//

...

int main() {

Person p("Ritchie", "Dennis");Student s("Doe", "John", "12345678");

processPerson(p); // invokes Person::printprocessPerson(s); // invokes Person::print

would be nice if processPerson called version of print that corresponds

to
actual type

of
object referenced by function parameter p

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 362

Slicing

slicing: copying or moving object of derived class to object of base class

(e.g., during construction or assignment), losing part of information in so

doing

example:

1 class Base {

2

9

10

11

};

5

6

// ...

3
int x_;

4

class Derived : public Base {

};

7 // ...

8
int y_;

int main() {

12 Derived d1, d2;

13 Base b = d1;

14
// slicing occurs

15 Base& r = d1;

16 r = d2;

17
// more treacherous case of slicing

18
// slicing occurs

19 // d1 now contains mixture of d1 and d2

20
// (i.e., base part of d2 and derived part of d1)

21 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 363

Inheritance
and

Overloading

functions do not overload across scopes

overloading

can employ using statement
to

bring base members into scope for

Copyright c
2015, 2016

Michael D.
Adams

364C++ Version: 2016-01-18

Inheritance and Overloading Example

#include<iostream>

probably not intended

probably not intended

1

2

3 class Base {

4
public:

5 double f(double d) const {return d;}

6 // ...

7 };

8

9
class Derived : public Base {

10 public:

11 int f(int i) const {return i;}

12 // ...

13 };

14

15 int main()

16 {

17 Derived d;

18 std::cout << d.f(0) << ’\n’;

19 // calls Derived::f(int) const

20 std::cout << d.f(0.5) << ’\n’;

21 // calls Derived::f(int) const;

22
Derived* dp = &d;

23
std::cout << dp->f(0) << ’\n’;

24 // calls Derived::f(int) const

25
std::cout << dp->f(0.5) << ’\n’;

26 // calls Derived::f(int) const;

27 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 365

10

11

12

13
14

};
15

16

28 }

Using Base Members Example

1 #include<iostream>

2

3 class Base {

4
public:

5

double f(double d) const {return d;}

6 // ...

7 };

8

9
class Derived : public Base {

public:

int

using Base::f; // bring Base::f into scope

int f(int i) const {return i;}

// ...

main()

17 {

18 Derived d;

19 std::cout << d.f(0) << ’\n’;20

// calls Derived::f(int) const

21 std::cout << d.f(0.5) << ’\n’;22

// calls Base::f(double) const

23
Derived* dp = &d;

24
std::cout << dp->f(0) << ’\n’;

25

// calls Derived::f(int) const

26
std::cout << dp->f(0.5) << ’\n’;

27

// calls Base::f(double) const

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 366

Section 2.7.2

Virtual Functions and Run-Time Polymorphism

Copyright c
2015, 2016

Michael D.
Adams

367C++ Version: 2016-01-18

Run-Time Polymorphism

polymorphism is characteristic of being able to assign different meaning

to something in different contexts

polymorphism that occurs at run time called run-time polymorphism

(also known as dynamic polymorphism)

in context of inheritance, key type of run-time polymorphism is

polymorphic function call (also known as dynamic dispatch)

when inheritance relationship exists between two classes, type of

reference or pointer to object may not correspond to actual dynamic (i.e.,

run-time) type of object referenced by reference or pointer

that is, reference or pointer to type T may, in fact, refer to object of type D,

where D is either directly or indirectly derived from T

when calling member function through pointer or reference, may want

actual function invoked to be determined by dynamic type of object

referenced by pointer or reference

function call with this property said
to be polymorphic

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 368

Virtual Functions

in context of class hierarchies, polymorphic function calls achieved

through use of virtual functions

virtual function is member function with polymorphic behavior

when call made to virtual function through reference or pointer, actual

function invoked will be determined by dynamic type of referenced object

to make member function virtual, add keyword virtual to function

declaration

example:

class Base {

public:

virtual void func(); // virtual function

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

369C++ Version: 2016-01-18

Virtual Functions (Continued)

once function made virtual, it will automatically be virtual in all derived

classes, regardless of whether virtual keyword is used in derived

classes

therefore, not necessary to repeat virtual qualifier in derived classes

(and perhaps preferable not to do so)

virtual function must be defined in class where first declared unless pure

virtual function (to be discussed shortly)

derived class inherits definition of each virtual function from its base class,

but may override each virtual function with new definition

function in derived class with same name and same set of argument types

as virtual function in base class overrides base class version of virtual

function

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 370

Virtual
Function

Example

1 #include <iostream>2 #include <string>

3

4 class Person {

5 public:6 Person(const std::string& family, const std::string& given) :

7 family_(family), given_(given) {}

8 virtual void print() const

9 {std::cout << "person: " << family_ << ’,’ << given_ << ’\n’;}

10 protected:

11 std::string family_; // family name

12 std::string given_; // given name

13 };

14

15 class Student : public Person {

16 public:17 Student(const std::string& family, const std::string& given,18 const std::string& id) : Person(family, given), id_(id) {}

19 void print() const {

20 std::cout << "student: " << family_ << ’,’ << given_ <<21 }

22 private:

23 std::string id_; // student ID

24 };

25

26 void processPerson(const Person& p) {

27 p.print(); // polymorphic function call

28 // ...

29 }

30

31 int main() {

32 Person p("Ritchie", "Dennis");

33 Student s("Doe", "John", "12345678");

34 processPerson(p); // invokes Person::print35 processPerson(s); // invokes Student::print36 }

’,’ << id_ << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 371

Override Control: The override Qualifier

when looking at code for derived class, often not possible to determine if

member function intended to override virtual function in base class (or one

of its base classes)

can sometimes lead to bugs where programmer expects member function

to override virtual function when function not virtual

override qualifier used to indicate that member function is expected to

override virtual function in parent class; must come at end of function

declaration

example:

class Person {

public:virtual void print() const;

// ...

};

class Employee : public Person {

public:void print() const override; // must be

// ...

virtual

};

Copyright c
2015, 2016

Michael D.
Adams

C++ 372Version: 2016-01-18

Override Control: The
final

Qualifier

sometimes, may want to prevent any further overriding of virtual function

in any subsequent derived classes

adding final qualifier to declaration of virtual function prevents function

from being overridden in any subsequent derived classes

preventing further overriding can sometimes allow for better optimization

by compiler (e.g., via devirtualization)

example:

class A {

public:virtual void doStuff();

// ...

};

class B : public A {

public:void doStuff() final; // prevent further overriding

// ...

};

class C : public B {

public:

void doStuff(); // ERROR: cannot override

// ...

};Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 373

22 };

final
Qualifier

Example

1 class Worker {

2
public:

3

virtual void prepareEnvelope();

4 // ...

5 };

6

7
class SpecialWorker : public Worker {

8
public:

9
// prevent overriding function responsible for

10
// overall envelope preparation process

11
// but allow functions for individual steps in

12
// process to be overridden

13
void prepareEnvelope() final {

14
stuffEnvelope(); // step 1

15
lickEnvelope(); // step 2

16
sealEnvelope(); // step 3

17 }

18
virtual void stuffEnvelope();

19

virtual void lickEnvelope();
20

virtual void sealEnvelope();

21 // ...

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 374

Constructors, Destructors,
and

Virtual Functions

except in very rare cases, destructors in class hierarchy need to be virtual

otherwise, invoking destructor through base-class pointer/reference would

only destroy base-class part of object, leaving remainder of derived-class

object untouched

normally, bad idea to call virtual function inside constructor or destructor

dynamic type of object changes during construction and changes again

during destruction

final overrider of virtual function will change depending where in hierarchy

virtual function call is made

when constructor/destructor being executed, object is of exactly that type,

never type derived from it

although semantics of virtual function calls during construction and

destruction well defined, easy to write code where actual overrider not

what expected (and might even be pure virtual)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 375

9

10

11

12

13

14
15

16

17

20

}

21

22

23

24

25 }

1 class Base {

2
public:

3

Base() {}

4 ˜Base() {}5

// ...

6 };

7

8 class Derived

public:Derived()˜Derived()

:

:

// ...

private:

Problematic
Code

with Non-Virtual Destructor

// non-virtual destructor

public Base {

buffer_(new char[10’000]) {}

{delete[] buffer_;}

char* buffer_;

};

void process(Base* bp) {

18 // ...

19
delete bp;

int main() {

// always invokes only Base::˜Base

process(new Base);process(new Derived); // leaks memory

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 376

Corrected Code
with Virtual

Destructor

9

10

11

12

13

14
15

16

20

}

21

22

23

24

25 }

1 class Base {

2
public:

3

Base() {}

4 virtual ˜Base() {} // virtual destructor

5 // ...

6 };

7

8
class Derived : public Base {

public:Derived() : buffer_(new char[10’000]) {}

˜Derived() {delete[] buffer_;}//

...

private:char* buffer_;

};

17
void process(Base* bp) {

18 // ...

19
delete bp; // invokes destructor polymorphically

int main() {

process(new Base);process(new Derived);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 377

Preventing Creation
of

Derived Classes

in some situations, may want to prevent deriving from class

language provides means for accomplishing this

in class/struct declaration, after name of class can add keyword final to

prevent deriving from class

example:

class Widget final { /* ... */ };

class Gadget : public Widget { /* ... */ };

// ERROR: cannot derive from Widget

might want to prevent deriving from class with destructor that is not virtual

preventing derivation can sometimes also facilitate better compiler

optimization (e.g., via devirtualization)

might want to prevent derivation so that objects can be copied safely

without fear of slicing

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 378

Covariant
Return

Type

in some special cases, language allows relaxation of rule that type of

overriding function f must be same as type of virtual function f overrides

in particular, requirement that return type be same is relaxed

return type of derived-class function is permitted to be type derived

(directly or indirectly) from return type of base-class function

this relaxation of return type more formally known as covariant return

type

case of pointer return type: if original return type B* then return type of

overriding function may be D*, provided B is public base of D (i.e., may

return pointer to more derived type)

case of reference return type: if original return type B& then return type of

overriding function may be D&, provided B is public base of D (i.e., may

return reference to more derived type)

covariant return type can sometimes be exploited in order to avoid need

for type casts

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 379

Covariant
Return

Type
Example:

Cloning

class Base {1

2
public:

3 virtual Base* clone() const {

4
return new Base(*this);

5 }

6 // ...

7 };

8

9
class Derived : public Base {

10 public:

11
// use covariant return type

12 Derived* clone() const override {

13 return new Derived(*this);

14 }

15 // ...

16 };

17

18 int main() {

19 Derived* d = new Derived;

20 Derived* d2 = d->clone();

// OK: return type is Derived*// without covariant return type, would need cast:// Derived* d2 = (Derived*)d->clone();

21

2223

24 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 380

Pure Virtual Functions

sometimes desirable to require derived class to override virtual function

pure virtual function: virtual function that must
be

overridden
in

every

derived class

to declare virtual function as pure, add “= 0” at end of declaration

example:

class Widget {

public:

virtual void doStuff() = 0;

// ...

// pure virtual

};

pure virtual function can still be defined, although likely only useful in case

of virtual destructor

Copyright c
2015, 2016

Michael D.
Adams

381C++ Version: 2016-01-18

Abstract
Classes

class with one or more pure virtual functions called abstract class

cannot directly instantiate objects of abstract class (can only use them as

base class objects)

class that derives from abstract class need not override all of its pure

virtual methods

class that does not override all pure virtual methods of abstract base class

will also be abstract

most commonly, abstract classes have no state (i.e., data members) and

used to provide interfaces, which can be inherited by other classes

if class has no pure virtual functions and abstract class is desired, can

make destructor pure virtual (but must provide definition of destructor

since invoked by derived classes)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 382

Abstract Class Example

1

18

19

20

27

#include <cmath>

2

3
class Shape {

4
public:

5

virtual bool isPolygon() const = 0;

6 virtual float area() const = 0;

7
virtual ˜Shape() {};

8 };

9

10
class Rectangle : public Shape {

11
public:

12

Rectangle(float w, float h) : w_(w), h_(h) {}

13
bool isPolygon() const override {return true;}

14

float area() const override {return w_ * h_;}

15
private:

16
float w_; // width of rectangle

17
float h_; // height of rectangle

};

class Circle : public Shape {

21
public:

22

Circle(float r) : r_(r) {}

23 float area() const override {return M_PI * r_ * r_;}24

bool isPolygon() const override {return false;}
25

private:

26 float r_; // radius of circle

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 383

Pure
Virtual Destructor

Example

1 class Abstract {

2
public:

3
virtual ˜Abstract() = 0; // pure virtual destructor

4 // ... (no other virtual functions)

5 };

6

7 inline Abstract::˜Abstract()

8 { /* possibly empty */ }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 384

The dynamic_cast
Operator

often need to upcast and downcast (as well as cast sideways) in

inheritance hierarchy

dynamic_cast can be used
to

safely perform type conversions on

pointers and references to classes

syntax: dynamic_cast<T>(expr)

types involved must be polymorphic (i.e., have at least one virtual

function)

inspects run-time information about types to determine whether cast can

be safely performed

if conversion is valid (i.e., expr can validly be cast to T), casts expr to type

T and returns result

if conversion is not valid, cast fails

if expr is of pointer type, nullptr is returned upon failure

if expr is
of reference type, std::bad_cast exception

is
thrown upon

failure

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 385

dynamic_cast Example

1

9

14

}

15

#include <cassert>

2

3 class Base {

4
public:

5

virtual void doStuff() { /* ... */ };

6 // ...

7 };

8

class Derived1 : public Base { /* ... */ };

10
class Derived2 : public Base { /* ... */ };

11

12
bool isDerived1(Base& b) {

13
return dynamic_cast<Derived1*>(&b)

16 int main() {

17 Base b;

18 Derived1 d1;
19

Derived2 d2;
20

assert(isDerived1(b) == false);

21 assert(isDerived1(d1) == true);

22 assert(isDerived1(d2) == false);

23 }

!= nullptr;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 386

Cost of Run-Time Polymorphism

typically, run-time polymorphism does not come without run-time cost in

terms of both time and memory

in some contexts, cost can be significant

typically, virtual functions implemented using virtual function table

each polymorphic class has virtual function table containing pointers to all

virtual functions for class

each polymorphic class object has pointer to virtual function table

memory cost to store virtual function table and pointer to table in each

polymorphic object

in most cases, impossible for compiler to inline virtual function calls since

function to be called cannot be known until run time

each virtual function call is made through pointer, which adds overhead

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 387

Curiously-Recurring Template Pattern (CRTP)

when derived type known at compile time, may want behavior similar to

virtual functions but without run-time cost (by performing binding at

compile time instead of run time)

can be achieved with technique known as curiously-recurring template

pattern (CRTP)

class Derived derives from class template instantiation using Derived

itself as template argument

example:

template <class Derived>class Base {

// ...

};

class Derived : public Base<Derived> {

// ...

};

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 388

11

12

13

14

15

16

17

}

18
19

20

21

22

23

24

25
26

27

28 }

CRTP
Example: Static

Polymorphism

1 #include <iostream>

2

3
template <class Derived>

4

class Base {

5
public:

6

void interface() {

7 std::cout << "Base::interface called\n";8

static_cast<Derived*>(this)->implementation();

9 }

10 // ...

};

class Derived : public Base<Derived> {

public:void implementation() {

std::cout << "Derived::implementation called\n";//

...

};

int main() {

Derived d;

d.interface();// calls Base::interface which, in turn, calls

// Derived::implementation

// no virtual function call, however

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 389

CRTP
Example: Static

Polymorphism

1 class TreeNode {

2 public:3 enum Kind {RED, BLACK}; // kinds of nodes

4 TreeNode *left(); // get left child node

5 TreeNode *right(); // get right child node

6
Kind kind(); // get kind of node

7 // ...

8 };

9

10 template <class Derived>

11 class GenericVisitor {

12 public:

13 void visit_preorder(TreeNode* node) {

14 if (node) {

15 process_node(node);

16 visit_preorder(node->left());

17 visit_preorder(node->right());

18 }

19 }

20 void visit_inorder(TreeNode* node) { /* ... */ }

21 void visit_postorder(TreeNode* node) { /* ... */ }

22 void process_red_node(TreeNode* node) { /* ... */ };

23 void process_black_node(TreeNode* node) { /* ... */ };

24 private:

25 Derived& derived() {return *static_cast<Derived*>(this);}

26 void process_node(TreeNode* node) {

27 if (node->kind() == TreeNode::RED) {

28 derived().process_red_node(node);

29 } else {

30 derived().process_black_node(node);

31 }

32 }

33 };

34

35 class SpecialVisitor : public GenericVisitor<SpecialVisitor> {

36 public:

37 void process_red_node(TreeNode* node) { /* ... */ }

38 };

39

40 int main() {SpecialVisitor v;}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 390

CRTP
Example:

Comparisons

1

12

13

22

23

24

25

26

27

28 }

#include <cassert>

2

3 template<class Derived>
4

struct Comparisons {

5
friend bool operator==(const Comparisons<Derived>& x,

6
const Comparisons<Derived>& y) {

7 const Derived& xr = static_cast<const Derived&>(x);8

const Derived& yr = static_cast<const Derived&>(y);
9

return !(xr < yr) && !(yr < xr);

10 }

11
// operator!= and others

};

14
class Widget : public Comparisons<Widget> {

15
public:

16

Widget(bool b, int i) : b_(b), i_(i) {}

17
friend bool operator<(const Widget& x, const Widget& y)

18
{return x.i_ < y.i_;}

19
private:

20

bool b_;

21 int i_;

};

int main() {

Widget w1(true, 1);Widget w2(false, 1);

assert(w1 == w2);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 391

CRTP
Example:

Object Counting

13

14

15
16

17

18

19

20

21

22
23

24

25

26

27

28

29 }

1 #include <iostream>2

#include <cstdlib>

3

4
template <class T>

5 class Counter {

6
public:

7

Counter() {++count_;}

8 Counter(const Counter&) {++count_;}

9 ˜Counter() {--count_;}10

static std::size_t howMany() {return count_;}
11

private:

12 static std::size_t count_;

};

template <class T>

std::size_t Counter<T>::count_ = 0;

// inherit from Counter to count objects

class Widget: private Counter<Widget> {

public:using Counter<Widget>::howMany;

// ...

};

int main() {

Widget w1; int c1 = Widget::howMany();

Widget w2, w3; int c2 = Widget::howMany();

std::cout << c1 << ’ ’ << c2 << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 392

Section 2.7.3

Multiple Inheritance and Virtual Inheritance

Copyright c
2015, 2016

Michael D.
Adams

393C++ Version: 2016-01-18

Multiple Inheritance

language allows derived class to inherit from more than one base class

multiple inheritance (MI): deriving
from more

than one base class

although multiple inheritance not best solution for most problems, does

have some compelling use cases

one compelling use case is for inheriting interfaces by deriving from

abstract base classes with no data members

when misused, multiple inheritance can lead to very convoluted code

in multiple inheritance contexts, ambiguities in naming can arise

for example, if class Derived inherits from classes Base1 and Base2,

each of which have member called x, name x can be ambiguous in some

contexts

scope resolution operator can be used to resolve ambiguous names

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 394

Ambiguity Resolution Example

class Base1 {

public:void func();

// ...

};

class Base2 {

void func();

// ...

};

class Derived

public:

:

// ...

};

int main() {

Derived d;

d.func();

d.Base1::func(); // OK:

d.Base2::func(); // OK:

public Base1, public Base2 {

// ERROR: ambiguous function

invokes Base1::func

invokes Base2::func

}

call

Copyright c
2015, 2016

Michael D.
Adams 395C++ Version: 2016-01-18

Multiple
Inheritance

Example

class Input_stream {

public:virtual ˜Input_stream() {}

virtual int read_char() = 0;

virtual int read(char* buffer, int size) = 0;

virtual bool is_input_ready() const = 0;

// ...(all pure virtual, no data)

};

class Output_stream {

public:virtual ˜Output_stream() {}

virtual int write_char(char c) = 0;

virtual int write(char* buffer, int size) = 0;

virtual int flush_output() = 0;

// ... (all pure virtual, no data)

};

class Input_output_stream :

public Output_stream {

// ...

public Input_stream,

};

Copyright c
2015, 2016

Michael D.
Adams

C++ 396Version: 2016-01-18

Dreaded
Diamond

Inheritance Pattern

use of multiple inheritance can lead to so called dreaded diamond

scenario

dreaded diamond inheritance pattern has following form:

A

D

CB

class D will have two subobjects of class A, since class D (indirectly)

inherits twice from class A

situation like one above probably undesirable and often sign of poor

design

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18 397C++

9

25 }

Dreaded Diamond Example

1 class Base {

2
public:

3

// ...

4
protected:

5
int data_;

6 };

7

8
class D1 : public Base { /* ... */ };

10
class D2 : public Base { /* ... */ };

11

12
class Join : public D1, public D2 {

13
public:

14

void method() {

15
data_ = 1; // ERROR: ambiguous

16 D1::data_ = 1; // OK: unambiguous

17 }

18 };

19

20 int main() {

21 Join* j = new Join();
22

Base* b;

23 b = j; // ERROR: ambiguous

24 b = static_cast<D1*>(j); // OK: unambiguous

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 398

Virtual Inheritance

when using multiple inheritance, may want to ensure that only one

instance of base-class object can appear in derived-class object

virtual base class: base class that is only ever included once in derived

class, even if derived from multiple times

virtual inheritance: when derived class inherits from base class that is

virtual

virtual inheritance can be used to avoid situations like dreaded diamond

pattern

order of construction: virtual base classes constructed first in depth-first

left-to-right traversal of graph of base classes, where left-to-right refers to

order of appearance of base class names

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 399

Avoiding
Dreaded Diamond

With Virtual Inheritance

class Base {

public:

// ...

protected:

int data_;};

class D1 : public virtual Base
{ /* ... */ };

class D2 : public virtual Base { /* ... */ };

class Join : public D1, public D2 {

public:void method() {

data_ = 1; // OK: unambiguous

}

};

int main() {

Join* j = new Join();Base* b = j; // OK: unambiguous

}

Copyright c
2015, 2016

Michael D.
Adams

400C++ Version: 2016-01-18

Section 2.7.4

References

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 401

References I

1
N. Meyers. The empty base C++ optimization.

Dr. Dobb’s Journal, Aug. 1997.

Available online at http://www.cantrip.org/emptyopt.html.

2 J. O. Coplien. Curiously recurring template patterns.

C++ Report, pages 24–27, Feb. 1995.

3 S. Meyers. Counting objects in C++.

C++ User’s Journal, Apr. 1998.

Available online at http://www.drdobbs.com/cpp/counting-objects-in-c/184403484.

4 A. Nasonov. Better encapsulation for the curiously recurring template

pattern.

Overload, 70:11–13, Dec. 2005.

Copyright c
2015, 2016

Michael D.
Adams

402C++ Version: 2016-01-18

Section 2.8

C++ Standard Library

Copyright c
2015, 2016

Michael D.
Adams

403C++ Version: 2016-01-18

C++
Standard

Library

C++ standard library provides huge amount of functionality (orders of

magnitude more than C standard library)

uses std namespace (to avoid naming conflicts)

well worth effort to familiarize yourself with all functionality in library in

order to avoid writing code unnecessarily

Copyright c
2015, 2016

Michael D.
Adams

404C++ Version: 2016-01-18

C++ Standard Library (Continued)

functionality can be grouped into following sublibraries:

1
language support library (e.g., exceptions, memory management)

2 diagnostics library (e.g., assertions, exceptions, error codes)

3 general utilities library (e.g., functors, date/time)

4
strings library (e.g., C++ and C-style strings)

5 localization library (e.g., date/time formatting and parsing, character

classification)

containers library (e.g., sequence containers and associative containers)

iterators library (e.g., stream iterators)

algorithms library (e.g., searching, sorting, merging, set operations, heap

operations, minimum/maximum)

numerics library (e.g., complex numbers, math functions)

input/output (I/O) library (e.g., streams)

regular expressions library (e.g., regular expression matching)

atomic operations library (e.g., atomic types, fences)

thread support library (e.g., threads, mutexes, condition variables, futures)

6

7

8

9

10

11

12

13

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 405

Commonly-Used Header
Files

Language-Support Library

Header File Description

cstdlib run-time support, similar to stdlib.h from C

(e.g., exit)

limits properties of fundamental types (e.g.,

numeric_limits)

exception exception handling support (e.g.,

set_terminate, current_exception)

initializer_list initializer_list class template

Diagnostics Library

Header File Description

cassert assertions (e.g., assert)

domain_error, out_of_range)

stdexcept predefined exception types (e.g., invalid_argument,

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 406

Commonly-Used Header Files (Continued 1)

General-Utilities Library

Header File Description

utility basic function and class templates (e.g., swap, move,

pair)

memory memory management (e.g., unique_ptr, shared_ptr,addressof)

functional functors (e.g., less, greater)

type_traits type traits (e.g., is_integral, is_reference)

chrono clocks (e.g., system_clock, steady_clock,

high_resolution_clock)

Strings Library

Header File Description

string C++ string classes (e.g., string)

cstring C-style strings, similar to string.h from C (e.g., strlen)

cctype character classification, similar to ctype.h from C (e.g.,

isdigit, isalpha)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 407

Commonly-Used Header
Files (Continued

2)

Containers, Iterators, and Algorithms Libraries

Header File Description

array array class

vector vector class

deque deque class

list list class

set set classes (i.e., set, multiset)

map map classes (i.e., map, multimap)

unordered_set unordered set classes (i.e., unordered_set,unordered_multiset)

unordered_map unordered map classes (i.e., unordered_map,unordered_multimap)

iterator iterators (e.g., reverse_iterator,

back_inserter)

algorithm algorithms (e.g., min, max, sort)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 408

Commonly-Used Header
Files (Continued

3)

Numerics Library

Header File Description

cmath C math library, similar to math.h from C (e.g., M_PI on

POSIX-compliant systems, sin, cos)

complex complex numbers (e.g., complex)

random random number generation (e.g.,

uniform_int_distribution,

uniform_real_distribution,

normal_distribution)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 409

Commonly-Used Header
Files (Continued

4)

I/O Library

Header File Description

iostream iostream objects (e.g., cin, cout, cerr)

istream input streams (e.g., istream)

ostream output streams (e.g., ostream)

fstream file streams (e.g., fstream)

sstream string streams (e.g., stringstream)

iomanip manipulators (e.g., setw, dec)

Regular-Expressions Library

Header File Description

regexp regular expressions (e.g., basic_regex)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 410

Commonly-Used Header
Files

Atomic-Operations and Thread-Support Libraries

(Continued 5)

Header File Description

atomic atomics (e.g., atomic)

thread threads (e.g., thread)

mutex mutexes (e.g., mutex,

timed_mutex)

recursive_mutex,

condition_variable condition variables (e.g., condition_variable)

future futures (e.g., future, shared_future, promise)

Copyright c
2015, 2016

Michael D.
Adams

411C++ Version: 2016-01-18

Section 2.8.1

Containers, Iterators, and Algorithms

Copyright c
2015, 2016

Michael D.
Adams

412C++ Version: 2016-01-18

Standard
Template Library (STL)

large part of C++ standard library is collection of class/function templates

known as standard template library (STL)

STL comprised of three basic building blocks:

1 containers

2
iterators

3 algorithms

containers store elements for processing (e.g., vector)

iterators allow access to elements for processing (which are often, but not

necessarily, in containers)

algorithms perform actual processing (e.g., search, sort)

Copyright c
2015, 2016

Michael D.
Adams

413C++ Version: 2016-01-18

Containers

container: class that represents collection/sequence of elements

usually container classes are template classes

sequence container: collection in which every element has certain

position that depends on time and place of insertion

examples of sequence containers include:

array (fixed-size array)

vector (dynamic-size array)

list (doubly-linked list)

associative container: collection in which position of element in depends

on its value or associated key and some predefined sorting/hashing

criterion

examples of associative containers include:

set (collection of unique keys, sorted by key)

map (collection of key-value pairs, sorted by key, keys are unique)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 414

Sequence Containers and
Container

Adapters

Sequence Containers

Name Description

array fixed-size array

vector dynamic-size array

deque double-ended queue

forward_list singly-linked list

list doubly-linked list

Container Adapters

Name Description

stack stack

queue FIFO queue

priority_queue priority queue

Copyright c
2015, 2016

Michael D.
Adams

415C++ Version: 2016-01-18

Associative Containers

Ordered Associative Containers

Name Description

set collection of unique keys, sorted by key

map collection of key-value pairs, sorted by key, keys are unique

multiset collection of keys, sorted by key, duplicate keys allowed

multimap collection of key-value pairs, sorted by key, duplicate keys al

lowed

Unordered Associative Containers

Name Description

unordered_set collection of unique keys, hashed by key

unordered_map collection of key-value pairs, hashed by key, keys are

unique

unordered_multiset collection of keys, hashed by key, duplicate keys al

lowed)

unordered_multimap collection of key-value pairs, hashed by key, duplicate

keys allowed

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 416

Typical
Container Member

Functions

Function Description

T() create empty container (default constructor)

T(const T&) copy container (copy constructor)

T(T&&) move container (move constructor)

˜T destroy container (including its elements)

empty test if container empty

size get number of elements in container

push_back insert element at end of container

clear remove all elements from container

operator= assign all elements of one container to other

operator[] access element in container

some member functions typically provided by container classes listed

below (where T denotes name of container class)

Copyright c
2015, 2016

Michael D.
Adams

417C++ Version: 2016-01-18

Container Example

example:

14

1516

17 }

1 #include <iostream>2

#include <vector>

3

4
int main(int argc, char** argv) {

5 std::vector<int> values;

6

7
// append elements with values 0 to 9

8 for (int i = 0; i < 10; ++i)

9 values.push_back(i);

10

11
// print each element followed by space

12 for (int i = 0; i < values.size(); ++i)

13 std::cout << values[i] << ’ ’;

std::cout << ’\n’;

return 0;

program will produce output:

0 1 2 3 4 5 6 7 8 9

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 418

Motivation for Iterators

different containers organize elements (of container) differently in memory

want uniform manner in which to access elements in any arbitrary

container

organization of elements in array/vector container:

organization of elements in doubly-linked list container:

Copyright c
2015, 2016

Michael D.
Adams

419C++ Version: 2016-01-18

Motivation for Iterators (Continued)

consider array/vector container with int elements:

suppose we want to set all elements in container to zero

we could use code like:

// int* begin; int* end;

for (int* iter = begin; iter != end; ++iter)

*iter = 0;

could we make similar-looking code work for more complicated

organization like doubly-linked list?

yes, create user-defined type that provides all pointer operations used

above (e.g., dereference, increment, comparison, assignment)

this leads to notion of iterator

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18C++ 420

Iterators

iterator: object that allows iteration over collection of elements, where

elements are often (but not necessarily) in container

iterators support many of same operations as pointers

in some cases, iterator may actually be pointer; more frequently, iterator is

user-defined type

five different categories of iterators: 1) input, 2) output, 3) forward,

4) bidirectional, and 5) random access

iterator has particular level of functionality, depending on category

one of three possibilities of access order:

1 forward (i.e., one direction only)

2 forward and backward

3 any order (i.e., random access)

one of three possibilities in terms of read/write access:

1
can only read referenced element (once or multiple times)

2
can only write referenced element (once or multiple times)

3
can read and write referenced element (once or multiple times)

const and mutable (i.e., non-const) variants (i.e., read-only or read/write

access, respectively)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 421

Abilities
of

Iterator
Categories

Category Ability Providers

Input Reads (once only)forward istream

(istream_iterator)

Output Writes (once only)forward ostream

(ostream_iterator),

inserter_iterator

Forward Reads and writesforward forward_list,

unordered_set,

unordered_mapBidirectional Reads and writesforward and backward list, set, multiset,

map, multimap

Random access Reads and writeswith random access array, vector, deque,

string

Copyright c
2015, 2016

Michael D.
Adams

422C++ Version: 2016-01-18

Input
Iterators

Expression Effect

T(a) copies iterator (copy constructor)

*aa->m dereference as rvalue (i.e., read only);

can only be dereferenced once

++a steps forward (returns new position)

a++ steps forward (returns old position)

a == b test for equality

a != b test for inequality

not assignable (i.e., no assignment operator)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 423

Output Iterators

Expression Effect

T(a) copies iterator (copy constructor)

*a

a->m

dereference as lvalue (i.e., write only);

can only be dereferenced once

++a steps forward (returns new position)

a++ steps forward (returns old position)

not assignable (i.e., no assignment operator)

no comparison operators (i.e., operator==, operator!=)

Copyright c
2015, 2016

Michael D.
Adams

C++ 424Version: 2016-01-18

Forward Iterators

Expression Effect

T() default constructor

T(a) copy constructor

a = b assignment

*aa->m dereference as lvalue (i.e., write only);

can only be dereferenced once

++a steps forward (returns new position)

a++ steps forward (returns old position)

a == b test for equality

a != b test for inequality

must ensure that valid to dereference iterator before doing so

Copyright c
2015, 2016

Michael D.
Adams

425C++ Version: 2016-01-18

Bidirectional
Iterators

bidirectional iterators are forward iterators that provide additional

functionality of being able to iterate backward over elements

bidirectional iterators have all functionality of forward iterators as well as

those listed in table below

Expression Effect

--a steps backward (returns new position)

a-- steps backward (returns old position)

Copyright c
2015, 2016

Michael D.
Adams

426C++ Version: 2016-01-18

Random-Access Iterators

random access iterators provide all functionality of bidirectional iterators

as well as providing random access to elements

random access iterators provide all functionality of bidirectional iterators

as well as those listed in table below

Expression Effect

a[n] deference element at index n (where n can be negative)

a += n steps n elements forward (where n can be negative)

a -= n steps n elements backward (where n can be negative)

a + n iterator for nth next element

n + a iterator for nth next element

a - n iterator for nth previous element

a - b distance from a to b

a < b test if a before b

a > b test if a after b

a <= b test if a not after b

a >= b test if a not before b

pointers (built into language) are examples of random-access iterators

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 427

Iterator
Example

1 #include <iostream>2

#include <vector>

3

4
int main(int argc, char** argv) {

5 std::vector<int> values(10);

6

7 std::cout << "number of elements: " <<

8
(values.end() - values.begin()) << ’\n’;

9

10 // initialize elements of vector to 0, 1, 2, ...

11
for (std::vector<int>::iterator i = values.begin();

12 i != values.end(); ++i) {

13 *i = i - values.begin();14

}

15

16
// print elements of vector

17 for (std::vector<int>::const_iterator i =

18 values.begin(); i != values.end(); ++i) {

19 std::cout << *i << ’ ’;

std::cout << ’\n’;

20 }
21

22

return 0;23

24 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 428

Iterator Gotchas

do not dereference iterator unless it is known to validly reference some

object

some operations on container can invalidate some or all iterators

referencing elements in container

critically important to know which operations invalidate iterators in order

to avoid using iterator that has been invalidated

incrementing iterator past end of container or decrementing iterator before

beginning of
container results

in
undefined behavior

input and output iterators can only be dereferenced once at each position

Copyright c
2015, 2016

Michael D.
Adams

C++ 429Version: 2016-01-18

Algorithms

algorithm: sequence
of

computations applied
to some

generic type

algorithms use iterators to access elements involved in computation

often pair of iterators used to specify range of elements on which to

perform some computation

what follows only provides brief summary of algorithms

for more details on algorithms, see:

http://www.cplusplus.com/reference/algorithm

http://en.cppreference.com/w/cpp/algorithm

Copyright c
2015, 2016

Michael D.
Adams

430C++ Version: 2016-01-18

Functions

Non-Modifying Sequence Operations

Name Description

all_of test if condition true for all elements in range

any_of test if condition true for any element in range

none_of test if condition true for no elements in range

for_each apply function to range

find find values in range

find_if find element in range

find_if_not find element in range (negated)

find_end find last subsequence in range

find_first_of find element from set in range

adjacent_find find equal adjacent elements in range

count count appearances of value in range

count_if count number of elements in range satisfying condition

mismatch get first position where two ranges differ

equal test whether elements in two ranges differ

search find subsequence in range

search_n find succession of equal values in range

Copyright c
2015, 2016

Michael D.
Adams

C++ 431Version: 2016-01-18

Functions (Continued 1)

Modifying Sequence Operations

Name Description

copy copy range of elements

copy_if copy certain elements of range

copy_n copy n elements

copy_backward copy range of elements backwards

move move range of elements

move_backward move range of elements backwards

swap exchange values of two objects

swap_ranges exchange values of two ranges

iter_swap exchange values of objects referenced by two iterators

transform apply function to range

replace replace value in range

replace_if replace values in range

replace_copy copy range replacing value

replace_copy_if copy range replacing value

Copyright c
2015, 2016

Michael D.
Adams

432C++ Version: 2016-01-18

Functions (Continued 2)

Modifying Sequence Operations (Continued)

Name Description

fill fill range with value

fill_n fill sequence with value

generate generate values for range with function

generate_n generate values for sequence with function

remove remove value from range

remove_if remove elements from range

remove_copy copy range removing value

remove_copy_if copy range removing values

unique remove consecutive duplicates in range

unique_copy copy range removing duplicates

reverse reverse range

reverse_copy copy range reversed

rotate rotate elements in range

rotate_copy copies and rotates elements in range

shuffle randomly permute elements in range

Copyright c
2015, 2016

Michael D.
Adams

433C++ Version: 2016-01-18

Functions
(Continued

3)

Partition Operations

Name Description

is_partitioned test if range is partitioned by predicate

partition partition range in two

partition_copy copies range partition in two

stable_partition partition range in two (stable ordering)

partition_point get partition point

Sorting

Name Description

is_sorted test if range is sorted

is_sorted_until find first unsorted element in range

sort sort elements in range

stable_sort sort elements in range, preserving order of

equivalents

partial_sort partially sort elements in range

partial_sort_copy copy and partially sort range

nth_element sort element in range

Copyright c
2015, 2016

Michael D.
Adams

434C++ Version: 2016-01-18

Functions (Continued
4)

Binary Search (operating on sorted ranges)

Name Description

lower_bound get iterator to lower bound

upper_bound get iterator to upper bound

equal_range get subrange of equal elements

binary_search test if value exists in sorted range

Set Operations (on sorted ranges)

Name Description

merge merge sorted ranges

inplace_merge merge consecutive sorted ranges

includes test whether sorted range includes another

sorted range

set_union union of two sorted ranges

set_intersection intersection of two sorted ranges

set_difference difference of two sorted ranges

set_symmetric_difference symmetric difference of two sorted ranges

Copyright c
2015, 2016

Michael D.
Adams

C++ 435Version: 2016-01-18

Functions
(Continued

5)

Heap Operations

Name Description

is_heap test if range is heap

is_heap_until first first element not in heap order

push_heap push element into heap range

pop_heap pop element from heap range

make_heap make heap from range

sort_heap sort elements of heap

Copyright c
2015, 2016

Michael D.
Adams

436C++ Version: 2016-01-18

Functions (Continued 6)

Minimum/Maximum

Name Description

min get minimum of given values

max get maximum of given values

minmax get minimum and maximum of given values

min_element get smallest element in range

max_element get largest element in range

minmax_element get smallest and largest elements in range

lexicographic_compare lexicographic less-than comparison

is_permutation test if range permutation of another

next_permutation transform range to next permutation

prev_permutation transform range to previous permutation

Copyright c
2015, 2016

Michael D.
Adams

437C++ Version: 2016-01-18

Functions
(Continued

7)

Numeric Operations

Name Description

iota fill range with successive values

accumulate accumulate values in range

adjacent_difference compute adjacent difference of range

inner_product compute inner product of range

partial_sum compute partial sums of range

Copyright c
2015, 2016

Michael D.
Adams

438C++ Version: 2016-01-18

Algorithms Example

#include <iostream>1

2 #include <vector>

3
#include <algorithm>

4

5
int main(int argc, char** argv) {

6 std::vector<int> values;

7 int x;

8 while (std::cin >> x)

9 values.push_back(x);

10 std::cout << "zero count: " << std::count(

11 values.begin(), values.end(), 0) << ’\n’;
12 std::random_shuffle(values.begin(),

values.end());

13 std::cout << "random order: ";

14 for (std::vector<int>::const_iterator i =

15 values.begin(); i != values.end(); ++i)

16 std::cout << *i << ’ ’;

17 std::cout << ’\n’;

18 std::sort(values.begin(), values.end());

19 std::cout << "sorted order: ";

20 for (std::vector<int>::const_iterator i =

21 values.begin(); i != values.end(); ++i)

22 std::cout << *i << ’ ’;

23 std::cout << ’\n’;

24 return 0;

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ 439Version: 2016-01-18

Prelude to Functor Example

consider std::transform function template:

template <class InputIterator,

class UnaryOperator>InputIterator last,UnaryOperator op);

class OutputIterator,OutputIterator transform(InputIterator first,

OutputIterator result,

returned value in range beginning at result

class UnaryOperator>

applies op to each element in range [first,last) and stores each

std::transform might be written as:

template <class InputIterator,

{

while

last,

UnaryOperator op)

OutputIterator transform(InputIterator first,InputIterator(first

!=

class OutputIterator,OutputIterator result,

last) {

*result = op(*first);

++first;++result;}

return result;}

or functor)

op is object of type that can be used with function call syntax (i.e., function

Copyright c
2015, 2016

Michael D.
Adams

440C++ Version: 2016-01-18

13

14

Functor Example

1 #include <iostream>2

#include <vector>3

#include <algorithm>

4

5
struct MultiplyBy { // Functor class

6 MultiplyBy(double factor) : factor_(factor) {}

7
double operator()(double x) const {

8
return factor_ * x;

9 }

10
private:

11

// state information

12
double factor_; // multiplicative factor

};

15 int main() {

16
MultiplyBy mb(2.0);

17 std::vector<double> v;

18
v.push_back(1);

19

v.push_back(2);

20
v.push_back(3);

21

// v contains 1 2 3

22 std::transform(v.begin(), v.end(), v.begin(), mb);
23

// v contains 2 4 6

24 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 441

Section 2.8.2

The vector Class Template

Copyright c
2015, 2016

Michael D.
Adams

442C++ Version: 2016-01-18

The
vector

Class
Template

one-dimensional array, where type of array elements and storage allocator

specified by template parameters

vector declared as:

template <class T, class Allocator = allocator<T>>

class vector;

T: type of elements in vector

Allocator: type of object used to handle storage allocation (unless

custom storage allocator needed, use default allocator<T>)

what follows only intended to provide overview of vector

for additional details on vector, see:

http://www.cplusplus.com/reference/stl/vector

http://en.cppreference.com/w/cpp/container/vector

Copyright c
2015, 2016

Michael D.
Adams

443C++ Version: 2016-01-18

Member
Types

Member Type Description

value_type T (i.e., element type)

allocator_type Allocator (i.e., allocator)

size_type type used for measuring size (typically unsigned in

tegral type)

difference_type type used to measure distance (typically signed in

tegral type)

reference value_type&

const_reference const value_type&

pointer allocator_traits<Allocator>::pointer

const_pointer allocator_traits<Allocator>::const_pointer

iterator

random-access iterator type

const_iterator constrandom-access iterator type

reverse_iterator reverse iterator type

(reverse_iterator<iterator>)

const_reverse_iterator const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 444

Member
Functions

Construction, Destruction, and Assignment

Member Name Description

constructor construct vector (overloaded)

destructor destroy vector

operator= assign vector

Iterators

Member Name Description

begin return iterator to beginning

end return iterator to end

cbegin return constiterator to beginning

cend return constiterator to end

rbegin return reverse iterator to beginning

rend return reverse iterator to end

crbegin return const reverse iterator to beginning

crend return const reverse iterator to end

Copyright c
2015, 2016

Michael D.
Adams

445C++ Version: 2016-01-18

Member
Functions (Continued 1)

Capacity

Member Name Description

empty test if vector is empty

size return size

max_size return maximum size

capacity return allocated storage capacity

reserve request change in capacity

shrink_to_fit shrink to fit

Element Access

Member Name Description

operator[] access element
(no

bounds checking)

at access element (with bounds checking)

front access first element

back access last element

data return pointer to start of element data

Copyright c
2015, 2016

Michael D.
Adams

446C++ Version: 2016-01-18

Member
Functions (Continued

2)

Modifiers

Member Name Description

clear clear content

assign assign vector content

insert insert elements

emplace insert element, constructing in place

push_back add element at end

emplace_back insert element at end, constructing in place

erase erase elements

pop_back delete last element

resize change size

swap swap content of two vectors

Allocator

Member Name Description

get_allocator get allocator used by vector

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 447

Invalidation of References, Iterators, and Pointers

capacity: total number of elements that vector could hold without

requiring reallocation of memory

any operation that causes reallocation of memory used to hold elements

of vector invalidates all iterators, references, and pointers referring to

elements in vector

any operation that changes capacity of vector causes reallocation of

memory

any operation that adds or deletes elements can invalidate references,

iterators, and pointers

operations that can potentially invalidate references, iterators, and

pointers to elements in vector include:

insert, erase, push_back, pop_back, emplace, emplace_back,

resize, reserve, operator=, assign, clear, shrink_to_fit, swap

(past-the-end iterator only)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 448

Iterator Invalidation Example

start denotes pointer to first element in array holding vector elements

i is iterator for vector (e.g., vector<T>::const_iterator, vector<T>::iterator)

initial
vector with three

elements and capacity of
three:

push_back(d) results in new larger array being allocated, contents of old array

copied to new one, and then new element added:

old array is deallocated, iterator i is now invalid:

Copyright c
2015, 2016

Michael D.
Adams

449C++ Version: 2016-01-18

vector Example: Constructors

std::vector<double> v0;

// empty vector

std::vector<double> v1(10);

// vector with 10 elements, default constructed

// (which for double means uninitialized)

std::vector<double> v2(10, 5.0);// vector with 10 elements, each initialized to 5.0

std::vector<int> v3{1, 2, 3};// vector with 3 elements: 1, 2, 3

// std::initializer_list (note brace brackets)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 450

vector Example: Iterators

1 #include <iostream >

2 #include <vector >

3

4 int main () {

5 st d : : vector ‘int > v [0, 1, 2, 3 };

6 for (auto& i : v) {++ i ; }

7 for (auto i v) {

8 std:: Cout << ' ' << i ;

9 }

10 st d : : C out << ' \in (;

11 for (auto i = v. begin (); i ! = v. end (); ++ i)

12 –– (* i);

13 }

14 for (auto i = V . che gin () ; i ! = v. Cend () ;

15 std:: C out << ' ' << * i ;

16 }

17 st d : : C out << ' \in (;

18 for (auto i = v. Crbegin (); i ! = v. Crend ();

19 std:: Cout << ' ' << * i ;

20 }

21 std:: Cout << * \n' ;

22)

O program Output:

1 2 3 4

0 1 2 3

3 2 1 0 - I - H -

{

++ i) {

++ i)

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

vector Example

16

17

28 }

1 #include <iostream>2

#include <vector>

3

4 int main() {

5 std::vector<double> values;

6 // ...

7

8 // Erase all elements and then read elements from

9
// standard input.

10 values.clear();

11 double x;

12 while (std::cin >> x) {

13 values.push_back(x);

14 }

15 std::cout << "number of values read: " <<

values.size() << ’\n’;

18
// Loop over all elements and print the number of

19
// negative elements found.

20 int count = 0;

21
for (auto i = values.cbegin(); i != values.cend(); ++i) {

22 if (*i < 0.0) {

23 ++count;

24 }

25 }

26
std::cout << "number of negative values: " << count <<

27 ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 452

vector Example: Emplace

1 #include <iostream>2

#include <vector>

3

4 int main() {

5 std::vector<std::vector<int>> v{{1, 2, 3}, {4, 5, 6}};

6
v.emplace_back(10, 0);

7

// The above use of emplace_back is more efficient than:8

// v.push_back(std::vector<int>(10, 0));

9 for (const auto& i : v) {

10
for (const auto& j : i) {

11
std::cout << ’ ’ << j;

12 }

13 std::cout << ’\n’;

14 }

15 }

program output:

1 2 3

4 5 6

0 0 0 0 0 0 0 0 0 0

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 453

Section 2.8.3

The basic_string Class Template

Copyright c
2015, 2016

Michael D.
Adams

454C++ Version: 2016-01-18

The basic_string
Class

Template

character string type, parameterized on character type, character traits,

and storage allocator

basic_string declared as:

template <class CharT,class Traits = char_traits<CharT>,class Allocator = allocator<CharT>>

class basic_string;

CharT: type of characters in string

Traits: class that describes certain properties of CharT (normally, use

default)

Allocator: type of object used to handle storage allocation (unless

custom storage allocator needed, use default)

string is simply abbreviation for basic_string<char>

what follows is only intended to provide overview of basic_string

template class (and string class)

for more details on basic_string, see:

http://www.cplusplus.com/reference/string/basic_string

http://en.cppreference.com/w/cpp/string/basic_string

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 455

Member
Types

Member Type Description

traits_type Traits (i.e., character traits)

value_type Traits::char_type (i.e., character type)

allocator_type Allocator

size_type allocator_traits<Allocator>::size_type

difference_type allocator_traits<Allocator>::difference_type

reference value_type&

const_reference const value_type&

pointer allocator_traits<Allocator>::pointer

const_pointer allocator_traits<Allocator>::const_pointer

iterator

random-access iterator type

const_iterator constrandom-access iterator type

reverse_iterator reverse iterator type

(reverse_iterator<iterator>)

const_reverse_iterator const reverse iterator type

(reverse_iterator<const_iterator>)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 456

Member Functions

Construction, Destruction, and Assignment

Member Name Description

constructor construct

destructor destroy

operator= assign

Iterators

Member Name Description

begin return iterator to beginning

end return iterator to end

cbegin return constiterator to beginning

cend return constiterator to end

rbegin return reverse iterator to reverse beginning

rend return reverse iterator to reverse end

crbegin return const reverse iterator to reverse beginning

crend return const reverse iterator to reverse end

Copyright c
2015, 2016

Michael D.
Adams

457C++ Version: 2016-01-18

Member
Functions (Continued 1)

Capacity

Member Name Description

empty test if string empty

size get length of string

length same as size

max_size get maximum size of string

capacity get size of allocated storage

reserve change capacity

shrink_to_fit shrink to fit

Element Access

Member Name Description

operator[] access character in string (no bounds checking)

at access character in string (with bounds checking)

front access first character in string

back access last character in string

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 458

Member
Functions (Continued

2)

Operations

Member Name Description

clear clear string

assign assign content to string

insert insert into string

push_back append character to string

operator+= append to string

append append to string

erase erase characters from string

pop_back delete last character from string

replace replace part of string

resize resize string

swap swap contents with another string

Copyright c
2015, 2016

Michael D.
Adams

459C++ Version: 2016-01-18

Member Functions (Continued 3)

Operations (Continued)

Member Name Description

c_str get nonmodifiable C-string equivalent

data obtain pointer to first character of string

copy copy sequence of characters from string

substr generate substring

compare compare strings

Search

Member Name Description

find find content in string

rfind find last occurrence of content in string

find_first_of find character in string

find_first_not_of find absence of character in string

find_last_of find character in string from end

find_last_not_of find absence of character in string from end

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 460

Member Functions (Continued
4)

Allocator

Member Name Description

get_allocator get allocator

Copyright c
2015, 2016

Michael D.
Adams

461C++ Version: 2016-01-18

Non-Member
Functions

Numeric Conversions

Name Description

stoi convert string to int

stol convert string to long

stoll convert string to long long

stoul convert string
to unsigned long

stoull convert string to unsigned long long

stof convert string to float

stod convert string to double

stold convert string
to long double

to_string convert integral or floating-point value to string

to_wstring convert integral or floating-point value to wstring

Copyright c
2015, 2016

Michael D.
Adams

C++ 462Version: 2016-01-18

string Example

" << s.size() << ’\n’;

1 #include <iostream>2
#include <string>

3

4 int main() {

5
std::string s;

6 if (!(std::cin >> s)) {

7 s.clear();

8 }

9
std::cout << "string: " << s << ’\n’;

10
std::cout << "length:

11
std::string b;

12
for (auto i = s.crbegin(); i != s.crend(); ++i) {

13 b.push_back(*i);

14 }
15

std::cout << "backwards: " << b

1617
std::string msg = "Hello";

18
msg += ", World!"; // append ",

19

std::cout << msg << ’\n’;
20

21 const char *cstr = s.c_str();

22
std::cout << "C-style string: "

23 }

<< ’\n’;

World!"

<< cstr << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ 463Version: 2016-01-18

13

14

15 }

Numeric/String Conversion Example

1 #include <iostream>2

#include <string>

3

4 int main() {

5 double x = 42.24;

6
// Convert double to string.

7
std::string s = std::to_string(x);

8 std::cout << s << ’\n’;

9

10 s = "3.14";

11
// Convert string to double.

12 x = std::stod(s);

std::cout << x << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

464C++ Version: 2016-01-18

Section 2.8.4

Time Measurement

Copyright c
2015, 2016

Michael D.
Adams

465C++ Version: 2016-01-18

Time Measurement

time measurement capabilities provided by part of general utilities library

(of standard library)

header file chrono

identifiers in namespace std::chrono

duration: time interval

time point: specific point in time (measured relative to epoch)

clock: measures time in terms of time points

several clocks provided for measuring time

what follows only intended to provide overview of chrono part of library

for additional information on chrono part of library, see:

http://www.cplusplus.com/reference/chrono

http://en.cppreference.com/w/cpp/chrono

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 466

std::chrono Types

Time Points and Intervals

Name Description

duration time interval

time_point point in time

Clocks

Name Description

system_clock system clock (which may be adjusted)

steady_clock monotonic clock that ticks at constant rate

high_resolution_clock clock with shortest tick period available

Copyright c
2015, 2016

Michael D.
Adams

467C++ Version: 2016-01-18

9 }

10
11

}

12

13

std::chrono
Example:

Measuring
Elapsed Time

1 #include <iostream>2

#include <chrono>3

#include <cmath>

4

5
double get_result() {

int

6 double sum = 0.0;

7
for (long i = 0L; i < 1000000L; ++i) {

8 sum += std::sin(i) * std::cos(i);

return sum;

main() {

14 // Get the start time.

15 auto start_time =

16
std::chrono::high_resolution_clock::now();

17
// Do some computation.

18
double result = get_result();

19 // Get the end time.

20
auto end_time = std::chrono::high_resolution_clock::now();

21

// Compute elapsed time in seconds.

22
double elapsed_time = std::chrono::duration<double>(

23 end_time - start_time).count();24

// Print result and elapsed time.

25 std::cout << "result " << result << ’\n’;

26
std::cout << "time (in seconds) " << elapsed_time << ’\n’;

27

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 468

std::chrono Example: Determining Clock Resolution

1

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 469

Section 2.8.5

Miscellany

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 470

std::array Example

1
#include <array>

2 #include <iostream>3
#include <algorithm>

4

5 int main() {

6
// Fixed-size array with 4 elements.

7 std::array<int, 4> a = {{2, 4, 3, 1}};

8

9
// Print elements of array.

10
for (auto i = a.cbegin(); i != a.cend(); ++i) {

11 std::cout << ’ ’ << *i;

12 }

13 std::cout << ’\n’;14

15
// Sort elements of array.

16 std::sort(a.begin(), a.end());
17

18
// Print elements of array.

19
for (auto i = a.cbegin(); i != a.cend(); ++i) {

20 std::cout << ’ ’ << *i;

21 }

22 std::cout << ’\n’;

23 }

Copyright c
2015, 2016

Michael D.
Adams

C++ 471Version: 2016-01-18

Part 3

More C++

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 472

Section 3.1

Exceptions

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 473

Section 3.1.1

Preliminaries

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 474

Exceptions

exceptions are language mechanism for handling exceptional (i.e.,

abnormal) situations

exceptional situation perhaps best thought of as case when code could

not do what it was asked to do and usually (but not always) corresponds

to error condition

exceptions often employed for error handling

exceptions propagate information from point where error detected to point

where error handled

code that encounters error that it is unable to handle throws exception

code that wants to handle error catches exception and performs

processing necessary to handle error

exceptions provide convenient way in which to separate error detection

from error handling

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 475

The Problem

main.

.

.

High-Level

Code

Low-Level

Code

error detected in low-level code

want to handle error in high-level

code

must propagate error information

up call chain

Copyright c
2015, 2016

Michael D.
Adams

476C++ Version: 2016-01-18

Traditional
Error Handling

if any error occurs, terminate program

overly draconian

pass error code back from function (via return value, reference parameter,

or global object) and have caller check error code

errors are ignored by default (i.e., explicit action required to check for error

condition)

caller may forget to check error code allowing error to go undetected

code can become cluttered with many checks of error codes, which can

adversely affect code readability and maintainability

call error handler if error detected

may not be possible or practical for handler to recover from particular error

(e.g., handler may not have access to all information required to recover

from error)

Copyright c
2015, 2016

Michael D.
Adams

477C++ Version: 2016-01-18

9

10

11

12
13

}

14

15

16

17

18
19

}
20

21

22

23

24

25

}

26 // ...

27 }

Example: Traditional Error Handling

1 #include <iostream>

2

3 bool func3() {

4 bool success = false;

5 // ...

6 return success;

7 }

8

bool func2() {

if (!func3()) {return false;}

// ...

return true;

bool func1() {

if (!func2()) {return false;}

// ...

return true;

int main() {

if (!func1()) {

std::cout << "failed\n";return 1;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 478

Error
Handling With

Exceptions

when error condition detected, signalled by throwing exception (with

throw statement)

exception is object that describes error condition

thrown exception caught by handler (in catch clause of try statement),

which takes appropriate action to handle error condition associated with

exception

handler can be in different function from where exception thrown

error-free code path tends to be relatively simple, since no need to

explicitly check for error conditions

error condition less likely to go undetected, since uncaught exception

terminates program

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 479

Example: Exceptions

13

}
14

18

}

19

27 }

1 #include <iostream>2

#include <stdexcept>

3

4 void func3() {

5 bool success = false;

6 // ...

7 if (!success) {throw std::runtime_error("Yikes!");}

8 }

9

10 void func2() {

11 func3();

12 // ...

15 void func1() {

16 func2();

17 // ...

20 int main() {

21
try {func1();}

22 catch (...) {

23 std::cout << "failed\n";

24 return 1;

25 }

26 // ...

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 480

safe_divide
Example:

Traditional
Error

Handling

1 #include <iostream>

2 #include <vector>

3
#include <utility>

45 std::pair<bool, int> safe_divide(int x, int y) {

6
if (!y) {

7 return std::make_pair(false, 0);

8 }

9
return std::make_pair(true, x / y);

10

}
11

12 int main() {

13 std::vector<std::pair<int, int>> v = {{10, 2}, {10, 0}};

14
for (auto p : v) {

15
auto result = safe_divide(p.first, p.second);

16 if (result.first) {

17
int quotient = result.second;

18
std::cout << quotient << ’\n’;

19 } else {

20
std::cerr << "division by zero\n";

21 }

22 }

23 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 481

safe_divide
Example:

Exceptions

1 #include <iostream>

2 #include <vector>

3
#include <utility>

4

5
class divide_by_zero {};

67
int safe_divide(int x, int y) {

8
if (!y) {

9
throw divide_by_zero();

10 }

11
return x / y;

12 }
13

14 int main() {

15 std::vector<std::pair<int, int>> v = {{10, 2}, {10, 0}};

16
for (auto p : v) {

17
try {

18 std::cout << safe_divide(p.first, p.second) <<

19 ’\n’;

20 }

21
catch(const divide_by_zero& e) {

22
std::cerr << "division by zero\n";

23 }

24 }

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 482

Exceptions Versus Traditional Error Handling

advantages of exceptions:

exceptions allow for error handling code to be easily separated from code

that detects error

exceptions can easily pass error information many levels up call chain

passing of error information up call chain managed by language (no explicit

code required)

disadvantages of exceptions:

writing code that always behaves correctly in presence of exceptions

requires great care (as we shall see)

although possible to have no execution-time cost when exceptions not

thrown, still have memory cost (to store information needed for stack

unwinding for case when exception is thrown)

Copyright c
2015, 2016

Michael D.
Adams

C++ 483Version: 2016-01-18

Section 3.1.2

Exceptions

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 484

Exceptions

exceptions are objects

type of object used to indicate kind of error

value of object used to provide details about particular occurrence of error

exception object can have any type (built-in or class type)

for convenience, standard library provides some basic exception types

all exception classes in standard library derived (directly or indirectly) from

std::exception class

exception object is propagated from one part of code to another by

throwing and catching

exception processing disrupts normal control flow

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 485

Standard Exception Classes

Exception Classes Derived from exception Class

Type Description

logic_error faulty logic in program

runtime_error error caused by circumstances beyond scope of

program

bad_typeid invalid operand for typeid operator

bad_cast invalid expression for dynamic_cast

bad_weak_ptr bad weak_ptr given

bad_function_call function has no target

bad_alloc storage allocation failure

bad_exception use of invalid exception type in certain contexts

Copyright c
2015, 2016

Michael D.
Adams

486C++ Version: 2016-01-18

Standard
Exception Classes (Continued)

Exception Classes Derived from logic_error Class

Type Description

domain_error domain error (e.g., square root of negative number)

invalid_argument invalid argument

length_error length too great (e.g., resize vector beyond

max_size)

out_of_range out of range argument (e.g., subscripting error in

vector::at)

future_error invalid operations on future objects

Exception Classes Derived from runtime_error Class

Type Description

range_error range error

overflow_error arithmetic overflow error

underflow_error arithmetic underflow error

regex_error error in regular expressions library

system_error operating-system
or

other low-level error

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 487

Section 3.1.3

Throwing and Catching Exceptions

Copyright c
2015, 2016

Michael D.
Adams

488C++ Version: 2016-01-18

Throwing Exceptions

throwing exception accomplished by throw statement

throwing exception transfers control to handler

object is passed

type of object determines which handlers can catch it

handlers specified with catch clause of try block

for example

throw "OMG!";

can be caught by handler of const char* type, as in:

try {

// ...

}

catch (const char* p) {

// handle character string exceptions here

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 489

Throwing Exceptions (Continued)

throw statement initializes temporary object called exception object

type of exception object determined by static type of operand of throw

(so slicing can occur)

if thrown object is class object, copy/move constructor and destructor

must be accessible

temporary may be moved/copied several times before caught

advisable for type of exception object to be user defined to reduce

likelihood of different parts of code using type in conflicting ways

Copyright c
2015, 2016

Michael D.
Adams

C++ 490Version: 2016-01-18

Catching Exceptions

exception can be caught by catch clause of try-catch block

code that might throw exception placed in try block

code to handle exception placed in catch block

try-catch block can have multiple catch clauses

catch clauses checked for match in order specified and only first match

used

catch (...) can be used to catch any exception

example:

try {

// code that might throw exception

}

catch (const std::logic_error& e) {

// handle logic_error exception

}

catch (const std::runtime_error& e) {

// handle runtime_error exception

}

catch (...) {

// handle other exception types

}

Copyright c
2015, 2016

Michael D.
Adams

C++ 491Version: 2016-01-18

Catching Exceptions
(Continued)

catch exceptions by reference in order to:

avoid copying, which might throw

avoid slicing

allow exception object to be modified and then rethrown

Copyright c
2015, 2016

Michael D.
Adams

492C++ Version: 2016-01-18

12

13
14

15

22

}
23

1 #include <iostream>2

#include <stdexcept>

3

4 class Error {

5
public:

6

Error(int value)

:8 Error(const Error&)

Exception During
Exception: Catching By Value

value_(value) {}

7 Error(Error&& e) : value_(e.value_) {}

{throw std::runtime_error("copy");}

9
int get() const {return value_;}

10
private:

11 int value_; // error code

};

void func2() {throw Error(42);} // might move

16 void func1() {

17
try {func2();}

18
// catch by value (copy throws)

19 catch (Error e) {

20
std::cerr << "yikes\n";

21 }
24

25

26

27 }

int main() {

try {func1();}catch (...) {std::cerr << "exception\n";}

Copyright c
2015, 2016

Michael D.
Adams

C++ 493Version: 2016-01-18

Throwing Polymorphically: Failed
Attempt

1 #include <iostream>2

3 class Base {};

4 class Derived :

5

6 void func(Base& x) {

7

8 }

9

10 int main() {

11 Derived d;

12
try {func(d);}

13 catch (Derived& e) {

14 std::cout <<

15 }

16 catch (...) {

17 std::cout <<18 }

19 }

public Base {};

throw x; // always throws Base

"Derived\n";

"not Derived\n";

type of exception object determined from static type of throw expression

Copyright c
2015, 2016

Michael D.
Adams

494C++ Version: 2016-01-18

Throwing Polymorphically

1 #include <iostream>2

3 class Base {

4
public:

5 virtual void raise() {throw *this;}6 };

7
class Derived : public Base {

8
public:

9 virtual void raise() {throw *this;}
10

};

11

12 void func(Base& x) {

13 x.raise();

14 }
15

16 int main() {

17 Derived d;

18
try {func(d);}

19 catch (Derived& e) {

20 std::cout << "Derived\n";

21 }

22 catch (...) {

23 std::cout << "not Derived\n";24 }

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 495

Rethrowing Exceptions

caught exception can be rethrown by throw statement with no operand

example:

try {

// code that may throw exception

}

catch (...) {

throw; // rethrow caught exception

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 496

Rethrowing
Example:

Exception Dispatcher Idiom

1
void handle_exception() {

2
try {throw;}3

catch (const exception_1& e) {

4
log_error("exception_1 occurred");

5 // ...

6 }

7
catch (const exception_2& e) {

8
log_error("exception_2 occurred");

// ...

10 }

11

9

// ...

14 void func() {

15
try {operation();}

16

catch (...) {handle_exception();}
17

// ...

18
try {another_operation();}

19
catch (...) {handle_exception();}

20 }

12

}

13

allows reuse of exception handling code

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 497

Transfer of Control from Throw Site to Handler

when exception is thrown, control is transferred to nearest handler (in

catch clause) with matching type, where “nearest” means handler for try

block most recently entered (by thread) and not yet exited

if no matching handler found, std::terminate() is called

as control passes from throw expression to handler, destructors are

invoked for all automatic objects constructed since try block entered,

where automatic objects destroyed in reverse order of construction

process of calling destructors for automatic objects constructed on path

from try block to throw expression called stack unwinding

object not deemed to be constructed if constructor exits due to exception

(in which case destructor will not be invoked)

do not throw exception in destructor since destructors called during

exception processing and throwing exception during exception processing

will terminate program

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 498

Stack
Unwinding Example

1 void func1() {

2
std::string dave("dave");

3
try {

4
std::string bye("bye");

5 func2();

6 }

7 catch (const std::runtime_error& e) { // Handler

8 std::cerr << e.what() << ’\n’;9 }

10 }

11

12 void func2() {

13
std::string world("world");

14 func3(0);

17 void func3(int x) {

18
std::string hello("hello");

19 if (x == 0) {

20
std::string first("first");

21
std::string second("second");

22
throw std::runtime_error("yikes"); // Throw site

15

}
16

23 }

}

calling func1 will result in exception being thrown in func3

24

during stack unwinding, destructors called in order for second, first, hello,

world, and bye (i.e., reverse order of construction); dave unaffectedCopyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 499

Function Try Blocks

function try blocks allow entire function to be wrapped in try block

function returns when control flow reaches end of catch block (return

statement needed for non-void function)

example:

1 #include <iostream>2

#include <stdexcept>

3

4 int main()5

try {

6
throw std::runtime_error("yikes");

7 }

8 catch (const std::runtime_error& e) {

9 std::cerr << "runtime error " << e.what() << ’\n’;

10 }

although function try blocks can be used for any function, most important

use cases are for constructors and destructors

function try block only way to catch exceptions thrown during construction

of data members or base objects (which happens before constructor body

is entered) or during destruction of data members or base objects (which

happens after destructor body exited)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 500

Exceptions and
Construction/Destruction

order of construction:

1
base class objects as listed in type definition left to right

2
data members as listed in type definition top to bottom

3 constructor body

order of destruction is exact reverse of order of construction, namely:

1 destructor body

2
data members as listed in type definition bottom to top

3
base class objects as listed in type definition right to left

lifetime of object begins when constructor completes

constructor might throw in:

constructor of base class object

constructor of data member

constructor body

need to perform cleanup for constructor body

will assume destructors do not throw (since very bad idea to throw in

destructor)

any exception caught in function try block of constructor or destructor

rethrown implicitly (at end of catch block)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 501

Construction/Destruction Example

17

18

22 }

1
#include <string>

2

#include <iostream>

3

4 struct Base {

5 Base() {}

6 ˜Base() {};

7 };

8

9
class Widget :

10
public:

11

Widget() {}

12
˜Widget() {}

13 // ...

14
private:

15

std::string s_;

16
std::string t_;

public Base {

};

19 int main() {

20
Widget w;

21 // ...

Copyright c
2015, 2016

Michael D.
Adams

502C++ Version: 2016-01-18

Function
Try Block

Example

19

20

21

22

23

24

25

26 }

1 #include <iostream>2

#include <stdexcept>

3

4
class Gadget {

5
public:

6

Gadget() {throw std::runtime_error("ctor");}

7
˜Gadget() {}

8 };

9

10
class Widget {

11
public:

12

// constructor uses function try block

13
Widget()

14

try {std::cerr << "ctor body\n";}

15
catch (...) {std::cerr << "exception in ctor\n";}

16
˜Widget() {std::cerr << "dtor body\n";}

17
private:

18

Gadget g_;

};

int main()

try {Widget w;}

catch (...) {

std::cerr << "terminating due to exception\n";return 1;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 503

Section 3.1.4

Exception Specifications

Copyright c
2015, 2016

Michael D.
Adams

504C++ Version: 2016-01-18

The noexcept
Specifier

noexcept specifier in function declaration indicates whether or not

function can throw exceptions

noexcept specifier with bool constant expression argument indicates

function does not throw exceptions if expression true (otherwise, may

throw)

noexcept without argument equivalent to noexcept(true)except for destructors, not providing noexcept specifier equivalent to

noexcept(false)

if noexcept specifier not provided for destructor, specifier identical to

that of implicit declaration (which is, in practice, usually noexcept)

example:

void func1(); // may throw anything

void func2() noexcept(false); // may throw anything

void func3() noexcept(true); // does not throw

void func4() noexcept; // does not throw

template <class T>

void func5(T) noexcept(sizeof(T) <= 4);

// does not throw if sizeof(T) <= 4

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 505

The
noexcept

Specifier (Continued 1)

nontrivial bool expression for noexcept specifier often useful
in

templates

example (swap function):

#include <type_traits>
1

2
#include <utility>

3

4
// swap two values

5
template <class T>

6
void exchange(T& a, T& b) noexcept(

7 std::is_nothrow_move_constructible<T>::value &&

8 std::is_nothrow_move_assignable<T>::value) {

9 T tmp(std::move(a)); // move construction

10 a = std::move(b); // move assignment

11 b = std::move(tmp); // move assignment

12 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 506

The
noexcept

Specifier (Continued 2)

if
function

with noexcept(true) specifier throws exception,

std::terminate is called immediately

example:

// This function will terminate the program.

void die_die_die() noexcept {

throw 0;

}

advisable not to use noexcept(true) specifier unless clear that no

reasonable usage of function can throw (in current or any future version

of code)

in practice, can often be difficult to guarantee that function will never throw

exception (especially when considering all future versions of code)

Copyright c
2015, 2016

Michael D.
Adams

507C++ Version: 2016-01-18

Exceptions and
Function

Calls

for some (nonreference) class type T and some constant bool

expression expr, consider code such as:

T func(T) noexcept(expr);T x;

T y = func(x); // function call

function call can throw exception as result of:

1 parameter passing (if pass by value)

2 function execution including return statement

in parameter passing, construction and destruction of each parameter

happens in context of calling function

consequently, invocation of noexcept function can still result in

exception being thrown due to parameter passing

in case of return by value, construction of temporary (if not elided) to hold

return value happens in context of called function

if exception due to parameter passing must be avoided, pass by reference

or ensure noexcept move and/or copy constructor as appropriate

if
exception due

to
return by value must be avoided, ensure noexcept

move or copy constructor as appropriate

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 508

noexcept
Operator

noexcept operator takes expression and returns bool indicating if

expression can throw exception

does not actually evaluate expression

in
determining result, only considers noexcept specifications for

functions involved

example:

#include <cstdlib>1

2 #include <cassert>

3 #include <utility>
4

5
void increment(int&) noexcept;

6 char* memAlloc(std::size_t);

78
// does not throw exception, but not declared noexcept

9 void doesNotThrow() {};

10

11 int main() {

12
assert(noexcept(1 + 1) == true);

13 assert(noexcept(memAlloc(0)) == false);

14
// Note: does not evaluate expression

15 assert(noexcept(increment(*((int*)0))) == true);

16 assert(noexcept(increment(std::declval<int&>())) ==

17 true);

18
// Note: only uses noexcept specifiers

19 assert(noexcept(doesNotThrow()) == false);

20 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 509

noexcept Operator (Continued)

noexcept operator particularly useful for templates

example:

1 #include <iostream>2

3
class Int256 { /* ... */ }; // 256-bit integer

4
class BigInt { /* ... */ }; // arbitrary-precision integer

5

6
// function will not throw exception

7
Int256 operator+(const Int256& x, const Int256& y)

8 noexcept;

9

10
11

12

// function may throw exception

BigInt operator+(const BigInt& x, const BigInt& y);

// whether function may throw exception depends on T

template <class T>

T add(const T& x, const T& y) noexcept(noexcept(x + y) &&

13

14

15

16
17

18

std::is_nothrow_move_constructible<T>::value){return x + y;}

19 int main() {

20 Int256 i1, i2;21

BigInt b1, b2;

22
std::cout << "int " << noexcept(add(1, 1)) << ’\n’

23
<< "Int256 " << noexcept(add(i1, i2)) << ’\n’

24
<< "BigInt " << noexcept(add(b1, b2)) << ’\n’;

25

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 510

Dynamic Exception Specifications

language offers another mechanism for stating exception specifications

known as dynamic exception specifications

dynamic exception specifications are deprecated and should not be used

provide exception specification for function using throw specifier

used to specify list of all types of exceptions that can be thrown

in practice, such a list more of hindrance than help

if list of all allowable exceptions specified, must check if thrown exception

of expected type, which is unnecessary cost

in terms of compiler optimization, what matters most is whether any

exception (regardless of type) can be thrown at all

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 511

Section 3.1.5

Storing and Retrieving Exceptions

Copyright c
2015, 2016

Michael D.
Adams

512C++ Version: 2016-01-18

Storing and
Retrieving Exceptions

might want to store exception and then later retrieve and rethrow it

exception can be stored using std::exception_ptr type

current exception can be retrieved with std::current_exception

rethrow exception stored in exception_ptr object using

std::rethrow_exception

provides mechanism for moving exceptions between threads:

store exception on one thread

then retrieve and rethrow stored exception on another thread

std::make_exception_ptr can be used to make exception_ptr

object

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 513

16

}

17

21 }

Example: Storing and Retrieving Exceptions

1
#include <exception>

2

#include <stdexcept>

3

4
void yikes() {

5 throw std::runtime_error("Yikes!");

6 }

7

8
std::exception_ptr getException() {

9
try {

10 yikes();

11 }

12 catch (...) {

13
return std::current_exception();

14 }

15
return nullptr;

18 int main() {

19
std::exception_ptr e = getException();

20

std::rethrow_exception(e);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 514

Section 3.1.6

Exception Safety

Copyright c
2015, 2016

Michael D.
Adams

515C++ Version: 2016-01-18

Resource Management

resource: physical or virtual component of limited availability within

computer system

examples of resources include: memory, files, devices, network

connections, processes, threads, and locks

essential that acquired resource properly released when no longer needed

when resource not properly released when no longer needed, resource

leak said to occur

exceptions have important implications in terms of resource management

must be careful to avoid resource leaks

Copyright c
2015, 2016

Michael D.
Adams

C++ 516Version: 2016-01-18

Resource Leak Example

1 void useBuffer(char* buf) { /* ... */ }

2

3 void doWork() {

4 char* buf = new char[1024];

5 useBuffer(buf);

6
delete[] buf;

7 }

if useBuffer throws exception, code that deletes buf is never reached

Copyright c
2015, 2016

Michael D.
Adams

517C++ Version: 2016-01-18

Cleanup

cleanup operations should always be performed in destructors

following structure for code
is fundamentally flawed:

void func()

{

initialize();do_work();

cleanup();}

code with preceding structure not exception safe

if do_work throws, cleanup never called and cleanup operation not

performed

in best case, not performing cleanup will probably cause resource leak

Copyright c
2015, 2016

Michael D.
Adams

518C++ Version: 2016-01-18

Exception Safety and Exception Guarantees

in order for exception mechanism to be useful, must know what can be

assumed about state of program when exception thrown

operation said
to be exception safe if

it
leaves program

in
valid state when

operation is terminated by exception

several levels of exception safety: basic, strong, nothrow

basic guarantee: all invariants preserved and no resources leaked

with basic guarantee, partial execution of failed operation may cause side

effects

strong guarantee: in addition to basic guarantee, failed operation

guaranteed to have no side effects (i.e., commit semantics)

with strong guarantee, operation can still fail causing exception to be

thrown

nothrow guarantee: in addition to basic guarantee, promises not to emit

exception (i.e., operation guaranteed to succeed even in presence of

exceptional circumstances)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 519

Exception
Guarantees

nothrow guarantee should be provided by:

destructors

assume all functions throw if not known otherwise

code must always provide basic guarantee

swap operations

basic guarantee

examples of strong guarantee:

move operations (i.e., move constructors and move assignment operators)

provide strong guarantee when natural to do so and not more costly than

or is copyable)

push_back for container, subject to certain container-dependent conditions

being satisfied (e.g., for std::vector, element type has nonthrowing move

insert on std::listexamples of nothrow guarantee:

swap of two containers

pop_back for container

Copyright c
2015, 2016

Michael D.
Adams

520C++ Version: 2016-01-18

Resource Acquisition Is Initialization (RAII)

resource acquisition is initialization (RAII) is programming idiom used to

avoid resource leaks and provide exception safety

associate resource with owning object (i.e., RAII object)

period of time over which resource held is tied to lifetime of RAII object

resource acquired during creation of RAII object

resource released during destruction of RAII object

provided RAII object properly destroyed, resource leak cannot occur

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 521

Resource
Leak

Example Revisited

implementation 1 (not exception safe; has memory leak):

1

23

4

5 useBuffer(buf);

6

7 }

void useBuffer(char* buf) { /* ... */ }

void doWork() {

char* buf = new char[1024];

delete[] buf;

implementation 2 (exception safe):

9
10

11
12

13

14

15

16 useBuffer(buf);

17 }

1 template <class T>

2 class SmartPtr {

3 public:4

SmartPtr(int size) : ptr_(new T[size]) {}

5
˜SmartPtr() {delete[] ptr_;}

6
operator T*() {return ptr_;}

7

// ...

8 private:T* ptr_;

};

void useBuffer(char* buf) { /* ... */ }

void doWork() {

SmartPtr<char> buf(1024);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 522

Section 3.1.7

Exceptions: Implementation, Cost, and Usage

Copyright c
2015, 2016

Michael D.
Adams

523C++ Version: 2016-01-18

Implementation
of Exception Handling

standard does not specify how exception handling is to be implemented;

only specifies behavior of exception handling

consider typical implementation here

potentially significant memory overhead for storing exception object and

information required for stack unwinding

possible to have zero time overhead if no exception thrown

time overhead significant when exception thrown

not practical to create exception object on stack, since object frequently

needs to be propagated numerous levels up call chain

exception objects tend to be small

exception object can be stored in small fixed-size buffer falling back on

heap if buffer not big enough

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 524

Implementation
of Exception Handling

(Continued)

memory required to maintain sufficient information to unwind stack when

exception thrown

two common strategies for maintaining information for stack unwinding:

stack-based and table-based strategies

stack-based strategy:

information for stack unwinding is saved on call stack, including list of

destructors to execute and exception handlers that might catch exception

when exception is thrown, walk stack executing destructors until matching

catch found

table-based strategy:

store information to assist in stack unwinding in static tables outside stack

call stack used to determine which scopes entered but not exited

use look-up operation on static tables to determine where thrown exception

will be handled and which destructors to execute

table-based strategy uses less space on stack but potentially requires

considerable storage for tables

Copyright c
2015, 2016

Michael D.
Adams

525C++ Version: 2016-01-18

Appropriateness
of

Using Exceptions

use of exceptions not appropriate in all circumstances

in practice, exceptions can sometimes (depending on C++

implementation) have prohibitive
memory

cost for systems
with very

limited memory (e.g., some embedded systems)

since throwing exception has significant time overhead only use for

infrequently occurring situations (not common case)

in code where exceptions can occur, often much more difficult to bound

how long code path will take to execute

since difficult to predict response time of code in presence of exceptions,

exceptions often cannot be used in time critical component of real-time

system (where operation must be guaranteed to complete in specific

maximum time)

considerable amount of code in existence that is not exception safe,

especially legacy code

cannot use exceptions in code that is not exception safe

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 526

Enforcing Invariants: Exceptions Versus Assertions

whether invariants should be enforced by exceptions or assertions

somewhat controversial

would recommend only using exceptions for errors from which recovery is

likely to be possible

if error condition detected is indicative of serious programming error,

program state may already be sufficiently invalid (e.g., stack trampled,

heap corrupted) that exception handling will not work correctly anyhow

tendency amongst novice programmers is to use exceptions in places

where their use is either highly questionable or clearly inappropriate

Copyright c
2015, 2016

Michael D.
Adams

C++ 527Version: 2016-01-18

Section 3.1.8

Smart Pointers and Other RAII Classes

Copyright c
2015, 2016

Michael D.
Adams

528C++ Version: 2016-01-18

The
std::unique_ptr Template

Class

std::unique_ptr is smart pointer that retains exclusive ownership of

object through pointer

declaration:

template <class T, class Deleter = std::default_delete<T>>

class unique_ptr;

T is type of object to be managed (i.e., owned object)

Deleter is callable entity used to delete owned object

also correctly handles array types via partial specialization (e.g., T could

be array of char)

owned object destroyed when unique_ptr object goes out of scope

no two unique_ptr objects can own same object

unique_ptr object is movable; move operation transfers ownership

unique_ptr object is not copyable, as copying would create additional

owners

std::make_unique template function often used to create unique_ptr

objects (for exception-safety reasons)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 529

The std::unique_ptr Template
Class

(Continued)

Copyright c
2015, 2016

Michael D.
Adams

530C++ Version: 2016-01-18

Example: Resource Leak

20

21

22

23

24

25

std::numeric_limits<std::size_t>::max());

26

27 }

1 #include <cstddef>

2 #include <limits>

3

4 class TwoBufs {

5
public:

6

TwoBufs(std::size_t aSize, std::size_t bSize) :

7 a_(nullptr), b_(nullptr) {

8 a_ = new char[aSize];

9 // If new throws, a_ will be leaked.

10 b_ = new char[bSize];

11 }

12 ˜TwoBufs() {

13 delete[] a_;

14 delete[] b_;

15 }

16 // ...

17
private:

18

char* a_;

19 char* b_;

};

void doWork() {

// This may leak memory.

TwoBufs x(1000000,

// ...

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 531

Example:
std::unique_ptr

9

10

˜TwoBufs() {}

11

12

13

std::unique_ptr<char[]>14

std::unique_ptr<char[]> b_;
15

16

17

18

19

20 std::numeric_limits<std::size_t>::max());

21 }

1 #include <cstddef>

2 #include <limits>3

#include <memory>

4

5 class TwoBufs {

6
public:

7

TwoBufs(std::size_t aSize, std::size_t bSize)

b_(std::make_unique<char[]>(bSize)) {}

// ...

private: a_;

:

8 a_(std::make_unique<char[]>(aSize)),

};

void doWork() {

// This will not leak memory.

TwoBufs x(1000000,

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 532

The std::shared_ptr Template Class

std::shared_ptr is smart pointer that retains shared ownership of

object through pointer

declaration:

template <class T> class shared_ptr;

T is type of object to be managed (i.e., owned object)

multiple shared_ptr objects may own same object

owned object is deleted when last remaining owning shared_ptr object

is destroyed or last remaining owning shared_ptr object assigned

another pointer via assignment or reset

shared_ptr object is movable, where move transfers ownership

shared_ptr object is copyable, where copy creates additional owner

thread safety guaranteed for shared_ptr object itself but not owned

object

std::make_shared often used to create shared_ptr objects (for both

efficiency and exception-safety reasons)

shared_ptr has more overhead than unique_ptr so unique_ptr

should be preferred unless shared ownership required

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 533

The
std::shared_ptr Template

Class
(Continued)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 534

Example:
std::shared_ptr

9 std::vector<std::shared_ptr<std::string>>

10

11

std::make_shared<std::string>("apple"s));

12

all.emplace_back(13

std::make_shared<std::string>("orange"s));

14
15

std::make_shared<std::string>("banana"s));

16

17
18

19

20

21

22 }
23

}
24

25

26

27

28

29

1
#include <memory>

2

#include <vector>3

#include <string>
4

#include <iostream>

5

6
using namespace std::literals;

7

8 int main() {

all;all.emplace_back(all.emplace_back(

std::vector<std::shared_ptr<std::string>> some(all.begin(), all.begin() + 2);

for (auto& x : all) {

std::cout << *x << ’ ’ << x.use_count() << ’\n’;/* output:

apple 2

orange 2

banana 1

*/

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 535

Example: std::shared_ptr (Continued)

Copyright c
2015, 2016

Michael D.
Adams

536C++ Version: 2016-01-18

RAII Example: Stream Formatting Flags

1 #include <iostream>2

#include <ios>3

#include <boost/io/ios_state.hpp>

4

5
// not exception safe

6

auto flags = out.flags();

12 }

13

14
// exception safe

15

boost::io::ios_flags_saver ifs(out);

17

RAII objects can be used to save and restore state

8
// if exception thrown during output of x,

9
// formatting flags will not be restored

10 out << std::hex << std::showbase << x <<

out << std::hex << std::showbase << x <<

old

’\n’;

11 out.flags(flags);

void safeOutput(std::ostream& out, unsigned int x) {

16

’\n’;

18 }

void unsafeOutput(std::ostream& out, unsigned int x) {

7

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 537

Section 3.1.9

Exception Gotchas

Copyright c
2015, 2016

Michael D.
Adams

538C++ Version: 2016-01-18

shared_ptr
Example:

Not Exception Safe

1
#include <memory>

2

3 class T1 { /* ... */ };

4 class T2 { /* ... */ };

5

6

{ /* ... */ }
8

9 void doWork() {

10
// potential memory leak

// ...13

}

one problematic order:

14

void func(std::shared_ptr<T1> p, std::shared_ptr<T2> q)

7

11 func(std::shared_ptr<T1>(new T1),

12 std::shared_ptr<T2>(new T2));

allocate memory for T1

allocate memory for T2

construct T1

construct T2

construct shared_ptr<T1>

construct shared_ptr<T2>

call func

allocate memory for T1

construct T1

allocate memory for T2

construct T2

construct shared_ptr<T1>

construct shared_ptr<T2>

call func

1

2

3

4

5

6

7

if step 3 or 4 throws, memory leaked

another problematic order:

1

2

3

4

5

6

7

if
step 3

or
4 throws,

memory
leaked

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 539

shared_ptr
Example: Exception

Safe

1
#include <memory>

2

3 class T1 { /* ... */ };

4 class T2 { /* ... */ };

5

6
void func(std::shared_ptr<T1> p, std::shared_ptr<T2> q)

7 { /* ... */ }
8

void doWork() {

// ...

9

10

func(std::make_shared<T1>(), std::make_shared<T2>());11

12 }

previously problematic line of code now does following:

1 perform following operations in any order:

construct shared_ptr<T1> via make_shared<T1>

construct shared_ptr<T2> via make_shared<T2>

2
call func

each of T1 and T2 objects managed by shared_ptr at all times so no

memory leak possible if exception thrown

similar issue arises in context of std::unique_ptr and can be resolved

by using std::make_unique in similar way as above

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 540

Stack
Example

stack class template parameterized on element type T

template <class T>1

2 class Stack

3 {

4
public:

5 // ...

6
// Pop the top element from the stack.

7 T pop() {

8
// If the stack is empty...

9
if (top_ == start_)

10
throw "stack is empty";

11 // Remove the last element and return it.

12
return *(--top_);

13 }

14 private:

15 T* start_; // start of array of stack elements

16 T* end_; // one past end of array

17 T* top_; // one past current top element

};18

what is potentially problematic about this code with respect to exceptions?

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 541

Section 3.1.10

Miscellany

Copyright c
2015, 2016

Michael D.
Adams

542C++ Version: 2016-01-18

safe_add
Example:

Traditional
Error Handling

9 }

10

26 }

1 #include <limits>2

#include <vector>3

#include <iostream>

4

5 std::pair<bool, int> safe_add(int x, int y) {

6
return ((y > 0 && x > std::numeric_limits<int>::max() - y)

7 || (y < 0 && x < std::numeric_limits<int>::min() - y)) ?

8 std::make_pair(false, 0) : std::make_pair(true, x + y);

11 int main() {

12
constexpr int int_min = std::numeric_limits<int>::min();

13
constexpr int int_max = std::numeric_limits<int>::max();

14 std::vector<std::pair<int, int>> v{

15 {int_max, int_max}, {1, 2}, {int_min, int_min},16

{int_max, int_min}, {int_min, int_max}

17 };

18 for (auto x : v) {

19 auto result = safe_add(x.first, x.second);20

if (result.first) {

21 std::cout << result.second << ’\n’;22

} else {

23 std::cout << "overflow\n";

24 }

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 543

safe_add
Example: Exceptions

9
10

}

11

1 #include <limits>2

#include <vector>3

#include <iostream>4

#include <stdexcept>

5

6
int safe_add(int x, int y) {

7
return ((y > 0 && x > std::numeric_limits<int>::max() - y)

8 || (y < 0 && x < std::numeric_limits<int>::min() - y)) ?

throw std::overflow_error("addition") : x + y;

12 int main() {

13
constexpr int int_min = std::numeric_limits<int>::min();

14
constexpr int int_max = std::numeric_limits<int>::max();

15 std::vector<std::pair<int, int>> v{

16 {int_max, int_max}, {1, 2}, {int_min, int_min},17

{int_max, int_min}, {int_min, int_max}

18 };

19 for (auto x : v) {

20
try {

21 int result = safe_add(x.first, x.second);

22 std::cout << result << ’\n’;

23 }

24 catch (const std::overflow_error&) {

25 std::cout << "overflow\n";

26 }

27 }

28 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 544

Section 3.1.11

References

Copyright c
2015, 2016

Michael D.
Adams

545C++ Version: 2016-01-18

References I

1 D. Abrahams. Exception-safety in generic components.

In Lecture Notes in Computer Science, volume 1766, pages 69–79.

Springer, 2000.

A good tutorial on exception safety by an expert on the subject.

2 T. Cargill. Exception handling: A false sense of security.

C++ Report, 6(9), Nov. 1994.

Available online at http://ptgmedia.pearsoncmg.com/images/

020163371x/supplements/Exception_Handling_Article.html.

An early paper that first drew attention to some of the difficulties in writing

exception-safe code.

3 Exception-Safe Coding in C++, http://exceptionsafecode.com,2014.

4 V. Kochhar, How a C++ Compiler Implements Exception Handling,

http://www.codeproject.com/Articles/2126/How-a-C-compiler-implements-exception-handling, 2002.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 546

Talks I

1 Jon Kalb. Exception-Safe Code, CppCon, Bellevue, WA, USA, Sep 7–12,

2014. (This talk is in three parts.)

2 Jon Kalb. Exception-Safe Coding in C++Now, Aspen, CO, USA, May

13–18, 2012. (This talk is in two parts.)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 547

Section 3.2

Rvalue References

Copyright c
2015, 2016

Michael D.
Adams

548C++ Version: 2016-01-18

Section 3.2.1

Introduction

Copyright c
2015, 2016

Michael D.
Adams

549C++ Version: 2016-01-18

Motivation
Behind

Rvalue References

Rvalue references were added to the language in C++11 in order to

provide support for:

1 move operations; and

2 perfect forwarding.

A move operation is used to propagate the value from one object to

another, much like a copy operation, except that a move operation makes

fewer guarantees, allowing for greater efficiency and flexibility in many

situations.

Perfect forwarding relates to being able to pass function arguments from a

template function through to another function (called by the template

function) while preserving certain properties of those arguments.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 550

Terminology:
Named and

Cv-Qualified

A type that includes one or both of the qualifiers const and volatile

is called a cv-qualified type.

A type that is not cv-qualified
is

called cv-unqualified.

Example:

The types const int and volatile char are cv-qualified.

The types int and char are cv-unqualified.

An object or function that is named by an identifier is said to be named.

An object or function that cannot be referred to by name is said to be

unnamed.

Example:

std::vector<int> v = {1, 2, 3, 4};

std::vector<int> w;

w = v; // w and v are named

w = std::vector<int>(2, 0);// w is named

// std::vector<int>(2, 0) is unnamed

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 551

Section 3.2.2

Copying and Moving

Copyright c
2015, 2016

Michael D.
Adams

552C++ Version: 2016-01-18

Propagating
Values: Copying

and
Moving

Suppose that we have two objects of the same type and we want to

propagate the value of one object (i.e., the source) to the other object (i.e.,

the destination).

This can be accomplished in one of two ways:

1 copying; or

2 moving.

Copying propagates the value of the source object to the destination

object without modifying the source object.

Moving propagates the value of the source object to the destination

object and is permitted to modify the source object.

Moving is always at least as efficient as copying, and for many types,

moving is more efficient than copying.

For some types, copying does not make sense, while moving does (e.g.,

std::ostream, std::istream).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 553

class Vector {

public:

Vector Example: Moving Versus Copying

Consider a class that represents a one-dimensional array.

template <class T>

// ...

private:

T* data_; // pointer to element data

// (allocated with new)

unsigned int size_;}; // number of elements

Pictorially, the data structure looks like the following:

data_

object

nsize_

dn−1

.

.

.

d1

d0

How would copying be implemented?

How would moving be implemented?

Copyright c
2015, 2016

Michael D.
Adams

554C++ Version: 2016-01-18

Vector
Example:

Copying

code for copying from source src to destination dst (not self assignment):

delete [] dst.data_;

dst.data_ =

dst.size_ = src.size_;

std::copy_n(src.data_, src.size_, dst.data_);

new T[src.size_];

copying requires: one array delete (destruction, memory deallocation),

one array new (memory allocation, construction), copying of element data

(copy assignment, etc.), and updating data_ and size_ data members

copying proceeds as follows:

data_size_ sn−1..

.

s1s0nsrc

data_size_ dm−1

.

.

.

d1

d0

dst

mdata_size_ sn−1..

.

s1s0nsrc

data_size_ sn−1

.

.

.

s1

s0

dst

nCopyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 555

Vector Example: Moving

code for moving from source src to destination dst:

std::swap(src.data_, dst.data_);

std::swap(src.size_, dst.size_);

moving only requires updating data_ and size_ data members

although not considered here, could also free data array associated with

src if desirable to release memory as soon as possible

moving proceeds as follows:

data_size_ sn−1..

.

s1s0nsrc data_size_ dm−1

.

.

.

d1

d0

dst

mdst

data_ s0 data_ d0

size_ ..

.

s1m size_ .

.

.

d1n

src

sn−1 dm−1

Copyright c
2015, 2016

Michael D.
Adams

556C++ Version: 2016-01-18

Moving Versus Copying

Moving is usually more efficient than copying, often by very large margin.

So, we should prefer moving to copying.

We can safely replace a copy by a move when subsequent code does not

depend on the value of source object.

It would be convenient if the language could provide a mechanism for

automatically using a move (instead of a copy) in situations where doing

so is always guaranteed to be safe.

For reasons of efficiency, it would also be desirable for the language to

provide a mechanism whereby the programmer can override the normal

behavior and force a move (instead of a copy) in situations where such a

transformation is known to be safe only due to some special additional

knowledge about program behavior.

Rvalue references provide the above mechanisms.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 557

Section 3.2.3

References and Expressions

Copyright c
2015, 2016

Michael D.
Adams

558C++ Version: 2016-01-18

References

A reference is an alias (i.e., nickname) for an already existing object.

The language has two kinds of references:

1 lvalue references

2 rvalue references

int i = 5;

int& j = i;

const int& k

An lvalue reference is denoted by & (often read as “ref”).

// j is lvalue reference to int

= i; k is lvalue reference to const int

An rvalue reference is denoted by && (often read as “ref ref”).

int&& i = 5; // i is rvalue reference to int

const int&& j = 17; // j is rvalue reference to const int

The act of initializing a reference is known as reference binding.

reference binding; and

Lvalue and rvalues references differ only in their properties relating to:

overload resolution.

Copyright c
2015, 2016

Michael D.
Adams

C++ 559Version: 2016-01-18

Expressions

An expression is a sequence of operators and operands that specifies a

computation.

An expression has a type and, if the type is not void, a value.

Example:

int x

int y

int* p = &x;

double d = 0.0;

// Evaluate some

=

0;

= 0;

// expressions here.

Expression Type Value

x int 0

y = x int& reference to y

x + 1 int 1

x * x + 2 * x int 0

y = x * x int& reference to y

x == 42 bool false

*p int& reference to x

p == &x bool true

x > 2 * y bool false

std::sin(d) double 0.0

Copyright c
2015, 2016

Michael D.
Adams

560C++ Version: 2016-01-18

Categories of
Expressions

expression

glvalue
rvalue

lvalue xvalue prvalue

Every expression can be classified into exactly one of the three following

categories:

1 lvalue

2 prvalue (pure rvalue)

3 xvalue (expiring value)

An expression that
is
an lvalue or xvalue is called a glvalue (generalized

lvalue).

An expression that is a prvalue or an xvalue is called an rvalue.

Every expression is either an lvalue or an rvalue (but not both).

Whether or not it is safe to move (instead of copy) depends on whether an

lvalue or rvalue is involved.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 561

Lvalues

An lvalue is an expression that:

designates a function or object ; and

has an identity (i.e., occupies some identifiable location in memory and

therefore, in principle, can have its address taken).

Named objects and named functions are lvalues. Example:

int getValue();

int i = 0;

const int j = 1;

i = j + 1; // i and j are lvalues

getValue(); // getValue is lvalue [Note: not getValue()]

Dereferenced pointer. If e is an expression of pointer type, then *e is an

lvalue. Example:

char buffer[] = "Hello";

char* s = buffer;*s = ’a’; // *s is lvalue

*(s + 1) = ’b’; // *(s + 1) is lvalue

Copyright c
2015, 2016

Michael D.
Adams

562C++ Version: 2016-01-18

Lvalues (Continued)

type is an lvalue. Example:

int i = v[0];

The result of calling a function whose return type is an lvalue reference

std::vector<int> v = {{1,

// v[0] is lvalue

i

int j =

2, 3}};

// int& std::vector<int>::operator[](int);

Named rvalue references are lvalues. Example:

A string literal is
an lvalue. Example: "Hello World"

int&& = 1 + 3;

i; // i is lvalue

Rvalue references to functions (both named and unnamed) are lvalues.

Copyright c
2015, 2016

Michael D.
Adams

563C++ Version: 2016-01-18

Moving and Lvalues

Using a move (instead
of
a copy) is

not guaranteed to be safe when the

source is an lvalue (since other code can access the associated object by

name or through a pointer or reference).

Example:

Vector<int> x;

Vector<int> y(x);

// can we construct by moving (instead

// source x is lvalue

// not safe to move x to y since value

// might be used below

y = x;

// can we assign by moving (instead of

// source x is lvalue

// not safe to move x to y since value

// might be used below

of copying)?

of x

copying)?

of x

Copyright c
2015, 2016

Michael D.
Adams

564C++ Version: 2016-01-18

Prvalues

A prvalue (pure rvalue) is an expression that:

is a temporary object or subobject thereof, or a value that is not associated

with an object; and

does not have an identity.

A prvalue is a kind of rvalue.

Temporary objects are prvalues. Example:

std::vector<int> v;

v = std::vector<int>(10,

2);// std::vector<int>(10, 2) is prvalue

std::complex<double> u;

u = std::complex<double>(1, 2);

// std::complex<double>(1, 2) is prvalue

A function call whose return type is not a reference type is a prvalue.

Example:

int func();

int i = func(); // func() is prvalue

Copyright c
2015, 2016

Michael D.
Adams

565C++ Version: 2016-01-18

Prvalues (Continued)

All literals other than string literals are prvalues. Examples:

double pi = 3.1415; // 3.1415 is prvalue

int i = 42; // 42 is prvalue

i = 2 * i + 1; // 2 and 1 are prvalues

char c = ’A’; // ’A’ is prvalue

The result yielded by certain built-in operators (e.g., +, -) is a prvalue.

Example:

int i, j;

i = 3 + 5; // 3 + 5 is prvalue

j = i * i; // i * i is prvalue

The this keyword is a prvalue expression.

Prvalues need not have any storage associated with them.

Not requiring prvalue expressions to have storage gives the compiler

more freedom in generating code for such expressions.

int i = 2;

// 2 is prvalue and need not ever be stored in memory

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 566

Moving
and

Prvalues

Using a move (instead
of
a copy) is always safe when the source

is
a

prvalue (since the prvalue cannot correspond to an object with an identity).

Example (move from temporary object):

Vector<int> getVector();

Vector<int> x;

Vector<int> y(getVector());

// can we construct by moving (instead

// source getVector() is prvalue

// safe to move since temporary object

// used below

x = getVector();

// can we assign by moving (instead of

// source getVector() is prvalue

// safe to move since temporary object

// used below

of copying)?

could not be

copying)?

could not be

Copyright c
2015, 2016

Michael D.
Adams

567C++ Version: 2016-01-18

Xvalues

An xvalue (expiring value) is an expression that:

refers to an object (usually near the end of its lifetime);

has an identity; and

is deemed to be safe to use as the source for a move.

An xvalue is a kind of rvalue.

An xvalue is the result of certain kinds of expressions involving rvalue

references.

The result of calling a function whose return type is an rvalue reference

type is an xvalue. Example:

std::string s("Hello");

std::string t = std::move(s); // std::move(s) is xvalue

In the above example, the template function std::move converts its

argument to an xvalue (since it returns an rvalue reference type).

Unnamed rvalue references to objects are xvalues.

std::string s("Hello");

std::string t;

t = static_cast<std::string&&>(s);

// static_cast<std::string&&>(s) is xvalue

Copyright c
2015, 2016

Michael D.
Adams

C++ 568Version: 2016-01-18

Moving
and

Xvalues

Using a move (instead
of
a copy) is deemed to be safe when the

source
is

an xvalue.

Example (forced move):

Vector<int> v(100, 5);

Vector<int> u(200, -1);

for (auto i : v) std::cout << i << ’\n’;

for (auto i : u) std::cout << i << ’\n’;

v = std::move(u);

// std::move(u) is xvalue

// safe to force move since later code does

// not to use value of u

for (auto i : v) std::cout << i << ’\n’;

// later code known not to use value of u

The function std::move only allows for an object to be treated as if it

were safe to use as source of a move, but does not perform a move.

Copyright c
2015, 2016

Michael D.
Adams

569C++ Version: 2016-01-18

Moving
and

Lvalues
and

Rvalues

With regard to propagating the value from one object to another, we can

summarize the preceding results as given below.

If the source is an rvalue (i.e., prvalue or xvalue), using a move instead of

a copy is always safe.

If the source is an lvalue, using a move instead of a copy is not

guaranteed to be safe.

It would be highly desirable if the language would provide a mechanism

that would automatically allow a move to be used in the rvalue case and a

copy to be employed otherwise.

In fact, this is exactly what the language does.

Copyright c
2015, 2016

Michael D.
Adams

570C++ Version: 2016-01-18

More on Lvalues and Rvalues

Lvalues and rvalues can be either modifiable or nonmodifiable.

Example:

int i = 0;

const int j = 2;

i = j + 3;

// i is modifiable lvalue

// j is nonmodifiable lvalue

// j + 3 is modifiable rvalue

const std::string getString();

std::string s = getString();// getString() is nonmodifiable rvalue

Class rvalues can have cv-qualified types, while non-class rvalues always

have cv-unqualified types. Example:

const int getConstInt(); // const is ignored

const std::string getConstString();

int i = getConstInt();

// getConstInt() is modifiable rvalue of type int

// (not const int)

std::string s = getConstString();

// getConstString() is nonmodifiable rvalue

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 571

Exercise: Expressions

13

14

18

19

27 }

1 #include <iostream>2

#include <string>
3

#include <utility>

4

int

5 std::string&& func1(std::string& x) {

6 return std::move(x);

7 // x? std::move(x)?

8 }

9

10 main() {

11
const std::string hello("Hello");

12
std::string a;

std::string b;

15 a = hello + "!";

16 // hello? hello + "!"? a = hello + "!"?

17 std::cout << a << ’\n’;// std::cout? std::cout << a?

20 a = std::string("");

21
// std::string("")? a = std::string("")?

22 ((a += hello) += "!");

23 // a += hello?24

b = func1(a);

25 // func1(a)? b = func1(a)?26

std::cout << b << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 572

Built-In Operators, Rvalues,
and

Lvalues

Aside from the exceptions noted below, all of the built-in operators require

operands that are rvalues.

The operand of each of the following built-in operators must be an lvalue:

address of (i.e., unary &),

prefix and postfix increment (i.e., ++),

prefix and postfix decrement (i.e., --)

The left operand of the following built-in operators must be an lvalue:

assignment (i.e., =)

compound assignment (e.g., +=, -=, *=, /=, etc.)

Aside from the exceptions noted below, all of the built-in operators yield a

result that is an rvalue.

The following operators yield a result that is an lvalue:

subscript (i.e., [])

dereference (i.e., unary *)

assignment (i.e., =) and compound assignment (e.g., +=, -=, etc.)

prefix increment (i.e., ++) and prefix decrement (i.e., --)

function call (i.e., ()) invoking a function that returns a reference type

cast to reference type

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 573

Operators, Lvalues, and Rvalues

Whether an operator for a class type requires operands that are lvalues or

rvalues or yield lvalues or rvalues is determined by the parameter types

and return type of the operator function.

The member selection operator may yield an lvalue or rvalue, depending

on the particular manner in which the operator is used. (The behavior is

fairly intuitive.)

The lvalue/rvalue-ness and type of the result produced by the ternary

conditional operator depends on the particular manner in which the

operator is employed.

Copyright c
2015, 2016

Michael D.
Adams

C++ 574Version: 2016-01-18

Example:

int i

=int j = 2;

int k =

1;

i + j;

// operands of + must be rvalues

// i and j converted to rvalues

Implicit Lvalue-to-Rvalue Conversion

An implicit conversion from lvalues to rvalues is provided, which can be

used in most (but not all) circumstances.

Copyright c
2015, 2016

Michael D.
Adams

575C++ Version: 2016-01-18

Section 3.2.4

Reference Binding and Overload Resolution

Copyright c
2015, 2016

Michael D.
Adams

576C++ Version: 2016-01-18

References:
Binding and

Overload Resolution

The kinds of expressions, to which lvalue and rvalue references can bind,

differ.

For a nonreference type T (such as int or const int), what kinds of

expressions can validly be placed in each of the boxes in the example

below?

T& r = ;

T&& r = ;

Lvalue and rvalue references also behave differently with respect to

overload resolution.

Let T be a cv-unqualified nonreference type. Which overloads of func will

be called in the example below?

T operator+(const T&,void func(const T&);

void func(T&&);

T x;

func(x); // calls which version of func?func(x + x); // calls which version of func?

const T&);

Copyright c
2015, 2016

Michael D.
Adams

577C++ Version: 2016-01-18

Reference Binding

Implicit lvalue-to-rvalue conversion is disabled when binding to references.

An lvalue reference can bind to an lvalue as long as doing so would not

result in the loss of any cv qualifiers.

const int i = 0;

int& r1 = i; // ERROR: drops const

const int& r2 = i; // OK

const volatile int& r3 = i; // OK

The loss of cv qualifiers must be avoided for const and volatile

correctness.

Similarly, an rvalue reference can bind to an rvalue as long as doing so

would not result in the loss of any cv qualifiers.

const std::string getValue();

std::string&& r1 = getValue(); // ERROR: drops const

const std::string&& r2 = getValue(); // OK

Again, the loss of cv qualifiers must be avoided for const and volatile

correctness.

Copyright c
2015, 2016

Michael D.
Adams

578C++ Version: 2016-01-18

Reference
Binding

(Continued)

An lvalue reference can be bound to an rvalue only if doing so would not

result in the loss of any cv qualifier and the lvalue reference is const.

const std::string getConstValue();std::string& r1 = getConstValue();const std::string& r2

= getValue(); // OK

int& ri1 = 42; // ERROR: not const reference

const int& ri2 = 42; // OK

// ERROR: drops const

The requirement that the lvalue reference be const is to prevent temporary

objects from being modified in a very uncontrolled manner, which can lead

to subtle bugs.

An rvalue reference can never be bound to an lvalue.

int i = 0;

int&& r1 = i; // ERROR: cannot bind to lvalue

int&& r2 = 42; // OK

Allowing rvalue reference to bind to lvalues would violate the principle of

type-safe overloading, which can lead to subtle bugs.

Copyright c
2015, 2016

Michael D.
Adams

579C++ Version: 2016-01-18

Why Rvalue References Cannot Bind to Lvalues

In effect, rvalue references were introduced into the language to allow a

function to know if one of its reference parameters is bound to an object

whose value is safe to change without impacting other code, namely, an

rvalue (i.e., a temporary object or xvalue).

Since an rvalue reference can only bind to an rvalue, any rvalue reference

parameter to a function is guaranteed to be bound to a temporary object

or xvalue.

Example:

class Thing {

public:// Move constructor

// parameter x known to be safe to use as source for move

Thing(Thing&& x);

// Move assignment operator

// parameter x known to be safe to use as source for move

Thing& operator=(Thing&& x);

// ...

};

// parameter x known to be safe to modify

void func(Thing&& x);

If rvalue references could bind to lvalues, the above guarantee could not

be made, as an rvalue reference could then refer to an object whose value

cannot be changed safely, namely, an lvalue.

Copyright c
2015, 2016

Michael D.
Adams

C++ 580Version: 2016-01-18

Why Non-Const Lvalue References
Cannot Bind to

Rvalues

If non-const lvalue references could bind to rvalues, temporary objects

could be modified in many undesirable circumstances.

void func(int& x) {

// ...

}

int main() {

int i = 1;

int j = 2;

func(i + j);

// ERROR: cannot bind non-const lvalue

// reference to rvalue

// What would be consequence if allowed?

}

Copyright c
2015, 2016

Michael D.
Adams

C++ 581Version: 2016-01-18

Reference Binding Summary

RValue LValue

t latil const nst latil const

T COI).STU. V.O.Lat L.Le volatilell T COI) STU. V.O.Lat L.Le volatile

T T T T T T

T& & V C V CV Ä Ä Ä Ä

tCOInS V | V V V 2 | X Ä Ä

T& &

latil

volatile y | x V C Ä | X Ä Ä

T& &

const

volatilell V V V V Ä Ä Ä Ä

T& & _ _

T& Ä Ä Ä Ä V C V C.V

const T& || w/ V V V V V V V

vºic 2 | X Ä Ä V | C V C

const

volatile.|| X Ä Ä Ä V V V V

T&

V: allowed C: strips const V: strips volatile X: other

- […] [H] = ′ = E sº) o Gº

Copyright © 2015, 2016 Michael D. Adams Version: 2016-01-18C++

2021

22

23

24

2526

27

28

29

3031

32

33

34

35 }

Reference Binding Example

1 #include <string>2 using std::string;

3

4 string value() {

5 return string("Hello");

6 }

7

8 const string constValue() {

9 return string("World");

10 }

11

12 int main() {

13 string i("mutable");

14 const string j("const");

15

16 i;

j; // ERROR: drops const17

string& r01

string& r02 =

=

18 string& r03 = value(); // ERROR: non-const lvalue reference from rvalue

19 string& r04 = constValue(); // ERROR: non-const lvalue reference from rvalue

const string& r05 = i;

const string& r06 = j;

value();const string& r07

const string& r08 = constValue();

=

string&& r09

string&& r10

string&& r11

string&& r12 =

=

=

= i; // ERROR: rvalue reference from lvalue

j; // ERROR: rvalue reference from lvalue

value();constValue(); // ERROR: drops const

i; // ERROR: rvalue reference from lvalue

j; // ERROR: rvalue reference from lvalue

value();

const string&& r13

const string&& r14

const string&& r15

const string&& r16 = constValue();

=

=

=

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 583

Overload Resolution

Lvalues strongly prefer binding to lvalue references.

Rvalues strongly prefer binding to rvalue references.

Modifiable lvalues and rvalues weakly prefer binding to non-const

references.

Copyright c
2015, 2016

Michael D.
Adams

584C++ Version: 2016-01-18

Rvalue

Overload Resolution Summary

Priority

T
const

T

volatile
const

T
volatile T

const

T

Lvalue

const

T&&
2 1

volatile

T

volatile

T

const

volatile

T

T&& 1

T&&
2 1

const

volatile

T&&

3 2 2 1

T&

const T& 4 3 2 1

volatile

T&
2 1

1

const

volatile

T&

3 2 2 1

Copyright c
2015, 2016

Michael D.
Adams

585C++ Version: 2016-01-18

:

ſi

. :

::

#include <iostream >

#include <string >

void func (std:: string & x) {

std:: cout << "func (std:: string &) called \n";

}

void func (const std:: string & x) {

std:: cout << "func (const std:: string &) called \n";

}

void func (std:: string & & x) {

std:: cout << "func (std:: string & &) called \n";

}

void func (const stol :: string & & x) {

std:: cout << "func (const std:: string & &) called \n";

}

const Std :: String & & C on StValue (const Std :: String & & x) {

return static cast «const Std :: String & & X (X) ;

}

int main () {

const std:: string CS ("hello");

std:: string s ("world");

funC (S) ;

funC (C S) ;

funC (C S + S) ;

funC (C on StValue (CS + S)) ;

}

/* Output :

func (std:: string&) called

func (const stol: : string&) called

func (std:: string& &) called

37

38

func (const stol : : string& &) called

*/

- L| º - E -

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

Overloading
Example

2

1 #include <iostream>2 #include <string>

3

4 void func(const std::string& x) {

5 std::cout << "func(const std::string&) called\n";

8 void func(std::string&& x) {

9 std::cout << "func(std::string&&)

16 int main() {

17 const std::string cs("hello");

18 std::string s("world");

19 func(s);

20 func(cs);

21 func(cs + s);22 func(constValue(cs + s));

23 }

24

25 /* Output:26 func(const std::string&) called

27 func(const std::string&) called

28 func(std::string&&) called

29 func(const std::string&) called

30 */

6 }

7

called\n";

10 }

11

12 const std::string&& constValue(const std::string&& x) {

13 return static_cast<const std::string&&>(x);

14 }

15

Copyright c
2015, 2016

Michael D.
Adams

587C++ Version: 2016-01-18

Why Rvalue References Cannot
Bind

to Lvalues (Revisited)

If an rvalue reference could bind to an lvalue, this would violate the

principle of type-safe overloading.

13

14

22 }

1 #include <iostream>2

#include <string>

3

4 template <class T>

5 class Container {

6 public:7

// ...

8
// Forget to provide the following function:9

// void push_back(const T& value); // Copy semantics

10
void push_back(T&& value); // Move semantics

11 private:

12 //

};

...

15 int main() {

16
std::string s("Hello");

17 Container<std::string> c;

18
// What would happen here if lvalues

19 // could bind to rvalue references?20

c.push_back(s);

21 std::cout << s << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 588

Section 3.2.5

Moving

Copyright c
2015, 2016

Michael D.
Adams

589C++ Version: 2016-01-18

Move Constructors

A non-template constructor for class T is a move constructor if it can be

called with one parameter that is of type T&&, const T&&,

volatile T&&, or const volatile T&&.

Example (assuming no optimization):

struct T {

T();

T(const T&); // copy constructor

T(T&&); // move constructor

};

T func(int);

T a(func(1)); // calls T::T(T&&)

T b = a; // calls T::T(const T&)

Copyright c
2015, 2016

Michael D.
Adams

590C++ Version: 2016-01-18

Move Assignment Operators

A move assignment operator T::operator= is a non-static

non-template member function of class T with exactly one parameter of

type T&&, const T&&, volatile T&&, or const volatile T&&.

Example (assuming no optimization):

class T {

public:T();

T(const T&); // copy constructor

T(T&&); // move constructor

T& operator=(const T&); // copy assignment operator

T& operator=(T&&); // move assignment operator

// ...

};

T func(int);

T a;

T b;

a = func(1); // calls T::operator=(T&&)

b = a; // calls T::operator=(const T&)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 591

Vector
Example

Revisited

class Vector {

public:

// ...

private:T*

Recall the class from earlier that represents a one-dimensional array.

template <class T>

data_; // pointer to element data

// (allocated with new)

unsigned int size_;

};

// number of elements

Pictorially, the data structure looks like the following:

object

data_ d0

size_ dn−1

.

.

.

d1n

Copyright c
2015, 2016

Michael D.
Adams

592C++ Version: 2016-01-18

Example Without
Move Construction/Assignment

20

21

22

23

24

25

2627

28

29

30

31 }

1 #include <algorithm>2 #include <complex>

3

4 template <class T>

5 class Vector {

6 public:7 Vector(unsigned int size, T value = 0) : data_(new T[size]), size_(size)

8 {std::fill_n(data_, size, value);}9 Vector(const Vector& a) : data_(new T[a.size_]), size_(a.size_)

10 {std::copy_n(a.data_, a.size_, data_);}11 Vector& operator=(const Vector& a) {

12 if (this != &a) {

13 delete[] data_; size_ = a.size_; data_ = new T[a.size_];

14 std::copy_n(a.data_, a.size_, data_);

15 }

16 return *this;

17 }

18 ˜Vector() {delete[] data_;}19 //

...

private:

T* data_; // pointer to element data

unsigned int size_; // number of elements

};

typedef Vector<std::complex<double>> Vec;Vec getVector() {return Vec(1000, {0.0, 1.0});}

int main() {

Vec v(0);

Vec w = getVector(); // construct from temporary object

v = Vec(2000, {1.0, 2.0}); // assign from temporary object

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 593

Example With Construction/Assignment

#include <algorithm >

#include < complex >

template <class TX

class Vector {

public :

Vector (unsigned int size, T value = 0) : data (new T | size)), size (size)

{ St d : : fill_n (data_, Si Ze, Value); }

Vector (const Vector & a) : data_ (new T [a. Size |), size (a . Size)

{ Std : : Copy n (a data_, a . Size , data_); }

Vector & operator= (const Vector & a) {

if (this = & a) {

delete [] data_; Size = a . Size ; data_ = new T | a . Size) ;

Std : : Copy n (a data_, a . Size , data_);

}

return “this;

}

// Move constructor

Vector (Vector & & a) : data (a . data_), Si Ze (a . Size)

20 { a . Size = 0; a data_ = nullptr; }

21 // Move assignment operator

22 Vector & operator= (Vector & & a) {

23 Std : : Swap (Si Ze , a . Size); St d : : Swap (data_, a . data_);

24 return "this;

25 }

26 Vector () { delete [] data_; }

27 //

28 private:

29 T * data_; // pointer to element data

30 unsigned int size ; // number of elements

31 };

32 typedef Vector < std:: complex <double>> Vec ;

33 Vec getVector () { return Vec (1000, (0.0, 1.0)) ; }

34

35 int main () {

36 VeC v (0) ;

37 Vec W = getVector () ; // construct from temporary object

38 v = Vec (2000, {1.0, 2.0)) ; // assign from temporary object

39 }

- I - H - -

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

Allowing Move
Semantics

in Other Contexts

As we have seen, a reference parameter of a function that is bound to

modifiable rvalue can be modified safely (i.e., no observable change in

behavior outside of function).

Sometimes may want to allow a move to be used instead of a copy, when

this would not normally be permitted.

We can allow moves by casting to a non-const rvalue reference.

This casting can be accomplished by std::move, which is declared (in

the header file utility) as:

template <class T>

constexpr typename std::remove_reference<T>::type&&

move(T&&) noexcept;

For an object x of type T, std::move(x) is similar to

static_cast<T&&>(x) but saves typing and still works correctly when

T is a reference type (a technicality yet to be discussed).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 595

Old-Style Swap

Prior to C++11, a swap function (such as std::swap) would typically look

like this:

1
template <class T>

2
void swap(T& x, T& y) {

3 T tmp(x); // copy x to tmp

4 x = y; // copy y to a

5 y = tmp; // copy tmp to y

6 }

In the above code, a swap requires three copy operations (namely, one

copy constructor call and two copy assignment operator calls).

For many types
T,

this use of copying
is very inefficient.

Furthermore, the above code requires that T must be copyable (i.e., T has

a copy constructor and copy assignment operator).

In C++11, we can write a much better swap function.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 596

Improved Swap

As of C++11, a swap function would typically look like this:

template <class T>

void swap(T& x, T& y) {

1

2

3 T tmp(std::move(x)); // move x to tmp

4 x = std::move(y); // move y to x

5 y = std::move(tmp); // move tmp to y

6 }

The function std::move casts its argument to an rvalue reference.

Assuming that T provides a move constructor and move assignment

operator, a swap requires three move operations (i.e., one move

constructor call
and two

move assignment operator calls) and
no copying.

The use of std::move above is essential in order for copying to be

avoided.

Copyright c
2015, 2016

Michael D.
Adams

C++ 597Version: 2016-01-18

Why Distinguish Between Lvalues
and

Rvalues

By distinguishing between lvalues and rvalues, we can write more efficient

code.

Scenario 1:

void doSomething(std::complex<double>& z) {

// can the caller detect a change in z?

}

std::complex<double> z(1.0, 0.0);

doSomething(z);

Scenario 2:

void doSomething(std::complex<double>&& z) {

// can the caller detect a change in z?

}

doSomething(std::complex<double>(1.0, 2.0));

A function parameter that is bound to a modifiable rvalue can be changed

without any observable effect outside the function.

This gives us more freedom in how we deal with the object whose change

in value cannot be observed.

For example, this freedom can be used to replace

some

copies by moves.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 598

Reference-Qualified
Member

Functions

every nonstatic member function has implicit parameter *this

possible to provide reference qualifiers for implicit parameter

allows overloading member functions on lvalueness/rvalueness of *this

cannot mix reference qualifiers and non-reference qualifiers in single

overload set

provides mechanism for treating lvalue and rvalue cases differently

useful for facilitating move semantics or preventing operations not

appropriate for lvalues or rvalues

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 599

Reference-Qualified
Member

Functions Example

1

9

10

11

12

#include <iostream>

2

3
class Widget {

4
public:

5

void func() const &

6 {std::cout << "const lvalue\n";}

7 void func() &

8 {std::cout << "non-const lvalue\n";}void func() const &&

{std::cout << "const rvalue\n";}void func() &&

{std::cout << "non-const rvalue\n";}

};

const Widget getConstWidget() {return Widget();}

13

14

15

16

17

18

19

20

21

22

23

24 }

int main(){Widget w;

const Widget cw;w.func(); // non-const lvalue

cw.func(); // const lvalue

Widget().func(); // non-const rvalue

getConstWidget().func(); // const rvalue

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 600

class Int {

Lvalueness/Rvalueness and the *this Parameter

1

2
public:

3 Int(int x = 0) : value_(x) {}

4
// only allow prefix increment for lvalues

5
Int& operator++() & {++value_; return *this;}

6
// The following allows prefix increment for rvalues:

7
// Int& operator++() {++value_; return *this;}8 //

...

9
private:

10 int value_;

11 };

12
13

int one() {return 1;}

14

15 int main() {

16 int i = 0;

17
int j = ++i; // OK

18 // int k = ++one(); // ERROR (not lvalue)

19 Int x(0);

20
Int y = ++x; // OK

21 // Int z = ++Int(1); // ERROR (not lvalue)

22 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 601

Move
Semantics

and
the

*this Parameter

9

10

11

12

13

14
15

16
17

18

19

20

std::vector<char> d;

21

22

buffer.data(d);23

getBuffer().data(d);

24 }

1 #include <iostream>2

#include <vector>3

#include <utility>

4

5 class Buffer {

6
public:

7 Buffer(char value = 0) : data_(1024, value) {}

8 void data(std::vector<char>& x) const &

{x = data_;}

void data(std::vector<char>& x) &&

{x = std::move(data_);}

// ...

private:

std::vector<char> data_;

};

Buffer getBuffer()

int main() {

{return Buffer(42);}

Buffer buffer;

// copy into d

// move into d

Copyright c
2015, 2016

Michael D.
Adams

602C++ Version: 2016-01-18

Section 3.2.6

Reference Collapsing and Forwarding References

Copyright c
2015, 2016

Michael D.
Adams

603C++ Version: 2016-01-18

References to References

makes no sense.

int i = 0;

int& & j i;

A reference to a reference is not allowed, since such a construct clearly

= // ILLEGAL:

Although one cannot directly create a reference to a reference, a

Typedef name:

reference to reference

reference to a reference can arise indirectly in several contexts.

typedef int& RefToInt;

typedef RefToInt& T;

int x

Template function parameters:

= 1;

func<int&>(x);

int i

// reference to reference

Decltype specifier:

template <class T> T func(const T& x)

= 1;

decltype((i))& j

// reference to reference

{return x;}=

i;Copyright c
2015, 2016

Michael D.
Adams // reference to reference

C++ Version: 2016-01-18 604

References to References (Continued)

Auto specifier:

int i = 0;

auto&& j = i;

Class templates:

template <class T>

struct Thing {

};

// reference to reference

void func(T&&) {} // reference to reference

Thing<int&> x;

// if T is reference type

called reference collapsing.

If, during type analysis, a reference to a reference type is obtained, the

reference to reference is converted to a simple reference via a process

Copyright c
2015, 2016

Michael D.
Adams

605C++ Version: 2016-01-18

Reference Collapsing Rules

Let TR denote a type that is a reference to type T (where T may be cv

qualified).

The effect of reference collapsing is summarized below. .

Before Collapse After Collapse

TR&

const TR&

volatile TR&

const volatile TR&

TR&&

const TR&&

volatile TR&&

const volatile TR&&

T&

T&

T&

T&

TR

TR

TR

TR

In other words:

An lvalue reference to any reference yields an lvalue reference.

An rvalue reference to an lvalue reference yields an lvalue reference.

An rvalue reference to an rvalue reference yields rvalue reference.

Any cv qualifiers applied to a reference type are discarded (since cv

qualifiers cannot be applied to a reference).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 606

Reference Collapsing Examples

Due to reference collapsing, T&& syntax may not always be an rvalue

reference. Example:

typedef

int i =

IntRef&& r = i; // r is int& (i.e.,

Example:

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

Example:int

i =

int& j =

auto&& k = j;

int& IntRef;

0;

int& IntRef;

int&& IntRefRef;

const int&& ConstIntRefRef;

const int& ConstIntRef;

const IntRef& T1; // T1

const IntRefRef& T2; // T2

IntRefRef&& T3; // T3

ConstIntRef&& T4; // T4

ConstIntRefRef&& T5; // T5

0;

i;

lvalue reference)

is int&is int&is int&&is const

is const

// j cannot be inferred to have type int

// since rvalue reference cannot be bound

// j inferred to have type int&// reference collapsing of int& && yields

int&int&&

to lvalue

int&

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 607

Forwarding References

A cv-unqualified rvalue reference that appears in a type-deducing context

for template parameters is called a forwarding reference.

Type deduction for template parameters of template functions is defined in

such a way as to facilitate perfect forwarding.

Consider the following template-parameter type-deduction scenario:

template<class T>

void f(T&& p);

f(expr); // invoke f

Let E denote the type of the expression expr. The type T is
then deduced

as follows:

1
If expr is an lvalue, T is deduced as E&, in which case the type of p yielded

by reference collapsing is E&.

2
If expr is an rvalue, T is deduced as E, in which case p will have the type

E&&.

Thus, the type T&& will be an lvalue reference type if expr is an lvalue, and

an rvalue reference type if expr is an rvalue.

Therefore, the lvalue/rvalue-ness
of expr can be determined inside f

based on whether T&&
is an

lvalue reference type
or

rvalue reference type.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 608

Forwarding References Example

1
#include <utility>

2

3
template <class T> void f(T&& p);

4 int main() {

5 int i = 42;

6 const int ci =

7 const int& rci

8 f(i);

9
// i is lvalue with type int

10 // T is int&11

// p has type int&
12

f(ci);13

// ci is lvalue with type const int

14 // T is const int&15

// p has type const int&
16

f(rci);17

// rci is lvalue with type const int&18

// T is const int&19

// p has type const int&
20

f(2);

21
// 2 is rvalue with type int

22 // T is int

23
// p has type int&&

24

f(std::move(i));

25
// std::move(i) is rvalue with type int&&

26

// T is int

27
// p has type int&&

28 }

i;

= i;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 609

Section 3.2.7

Perfect Forwarding

Copyright c
2015, 2016

Michael D.
Adams

610C++ Version: 2016-01-18

Perfect Forwarding

to another function:

Perfect forwarding is the act of passing a template function’s arguments

lvalue/rvalue-ness; and

without rejecting any arguments that can be passed to that other function

without losing any information about the arguments’ cv-qualifications or

without requiring overloading.

In C++03, for example, the best approximations of perfect forwarding turn

all rvalues into lvalues and require at least two (and often more) overloads.

Copyright c
2015, 2016

Michael D.
Adams

611C++ Version: 2016-01-18

Perfect-Forwarding Example

Consider a template function wrapper and another function func, each of

which takes one argument.

Suppose that we want to perfectly forward the argument of wrapper to

func.

The function wrapper is to do nothing other than simply call func.

In doing so, wrapper must pass its actual argument through to func.

This must be done in such a way that the argument to wrapper and

argument to func have identical properties (i.e., match in terms of

cv-qualifiers and lvalue/rvalue-ness).

In other words, the following two function calls must have identical

behavior, where expr denotes
an

arbitrary expression:

wrapper(expr);func(expr);

The solution to a perfect-forwarding problem, such as this one, turns out

to be more difficult than it might first seem.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 612

Perfect-Forwarding Example:
First

Failed Attempt

For our first attempt, we propose the following code for the (template)

function wrapper:

template <class T>

void wrapper(T p) {

func(p);

}

If func takes its parameter by reference, calls to wrapper and func (with

the same argument) can have different behaviors.

Suppose, for example, that we have the following declarations:

void func(int&); // uses pass by reference

int i;

Then, the following two function calls are not equivalent:

wrapper(i);// T is deduced as int

// copy of i passed to func

// wrapper cannot change i

func(i);// i passed by reference

// func can change i

Problem: The original and forwarded arguments are distinct objects.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 613

Perfect-Forwarding Example:
Second

Failed Attempt

For our second attempt, we propose the following code for the (template)

function wrapper:

template <class T>

void wrapper(T& p) {

func(p);

}

If, for example, the function argument is an rvalue (such as a non-string

literal or temporary object), calls to wrapper and func (with the same

argument) can have different behaviors.

Suppose, for example, that we have the following declaration:

void func(int); // uses pass by value

Then, the following two function calls are not equivalent:

wrapper(42);// T is deduced as int

// ERROR: cannot bind rvalue to

// nonconst lvalue reference

func(42);

// OK

Problem: The original and forwarded arguments do not match in terms of

lvalue/rvalue-ness.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 614

For our third attempt, we propose the following code for the (template)

template <class T>

void wrapper(const T& p) {

func(p);

}

Perfect-Forwarding Example:
Third

Failed
Attempt

function wrapper:

void func(int&);

int i;

If, for example, the function argument is a non-const object, calls to

wrapper(i);

Then, the following two function calls are not equivalent:

// ERROR:

func(i);

wrapper and func (with the same argument) will have different behaviors.

Suppose, for example, that we have the following declaration:

// OK

// would discard const qualifier

wrapper cannot call func,

cv-qualifiers.

as this

Problem: The original and forwarded arguments do not match in terms of

Copyright c
2015, 2016

Michael D.
Adams

615C++ Version: 2016-01-18

Perfect-Forwarding Example:
Solution

Finally, we propose the following code for the (template) function wrapper:

template <class T>

void wrapper(T&& p) {

func(static_cast<T&&>(p));

}

Consider now, for example, the following scenario:

int i = 42;

const int ci =

int& ri = i;

const int& rci =

wrapper(expr);

i;

i;

// invoke wrapper

The parameter p is an alias for the object yielded by the expression expr.

The argument expr and argument to func match in terms of cv-qualifiers

and lvalue/rvalue-ness.

expr argument to func

expr Type Category T Type (T&&) Category

i int lvalue int& int& lvalue

ci const int lvalue const int& const int& lvalue

ri int& lvalue int& int& lvalue

rci const int& lvalue const int& const int& lvalue

42 int rvalue int int&& rvalue

Copyright c
2015, 2016

Michael D.
Adams 616C++ Version: 2016-01-18

Perfect-Forwarding Example:
Solution

(Continued)

Although we only considered one specific scenario on the previous slide,

the solution works in general.

That is, the wrapper function from the previous slide will perfectly forward

its single argument, regardless of what the argument happens to be (or

which overload of func is involved).

Thus, we have a general solution to the perfect-forwarding problem in the

single-argument case.

This solution is easily extended to an arbitrary number of arguments.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 617

The std::forward Template Function

To avoid the need for an explicit type-cast operation when forwarding an

argument, the standard library provides the std::forward function

specifically for performing such a type conversion.

The template function forward is defined as:

template<class T>

T&& forward(typename std::remove_reference<T>::type& x)

noexcept {

return static_cast<T&&>(x);

}

A typical usage of forward might look something like:

template <class T1, class T2>void wrapper(T1&& x1, T2&& x2) {

func(std::forward<T1>(x1), std::forward<T2>(x2));

}

The expression forward<T>(a) is an lvalue if T is an lvalue reference

type and an rvalue otherwise.

The use of std::forward instead of an explicit type cast improves code

readability by making the programmer’s intent clear.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 618

Perfect-Forwarding Example Revisited

function:

We now revisit the perfect-forwarding example from earlier.

In the earlier example, perfect forwarding was performed by the following

template <class T>

void wrapper(T&& e) {

func(static_cast<T&&>(e));

}

The above code can be made more readable, however, by rewriting it to

make use of std::forward as follows:

template <class T>

void wrapper(T&& e) {

func(std::forward<T>(e));

}

Copyright c
2015, 2016

Michael D.
Adams

619C++ Version: 2016-01-18

Forwarding
Example

11

}

12

13

14

15 func(std::forward<T>(x));
16

}

17

18
19

20

28 }

1 #include <iostream>2

#include <string>
3

#include <utility>

4

5
void func(std::string& s) {

6
std::cout << "func(std::string&) called\n";

7 }

8

9
void func(std::string&& s) {

10
std::cout << "func(std::string&&) called\n";

template <class T>

void wrapper(T&& x) {

template <class T>

void buggy_wrapper(T x) {func(x);}

21 int main() {

22
using namespace std::literals;

23

std::string s("Hi"s);

24
wrapper(s); // which overload of func

25 buggy_wrapper(s); // which overload of func

26 wrapper("Hi"s); // which overload of func

buggy_wrapper("Hi"s); // which overload of func

called?called?called?called?

27

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 620

Perfect-Forwarding
Use Case:

Wrapper Functions

A wrapper function is simply a function used to invoke another function,

possibly with some additional processing.

Example:

1 #include <iostream>

2 #include <utility>

3 #include <string>
45

std::string emphasize(const std::string& s)

6 {return s + "!";}

7

8
std::string emphasize(std::string&& s)

9 {return s + "!!!!";}

10

11 template <class A>

12 auto wrapper(A&& arg) {

13
std::cout << "Calling with argument " << arg << ’\n’;

14
auto result = emphasize(std::forward<A>(arg));

15 std::cout << "Return value " << result << ’\n’;

16 return result;

17 }

18

19 int main() {

20
std::string s("Bonjour");

21 wrapper(s);

22 wrapper(std::string("Hello"));

23 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 621

Perfect-Forwarding
Use Case:

Factory
Functions

A factory function is simply a function used to create objects.

Often, perfect forwarding is used by factory functions in order to pass

arguments through to a constructor, which performs the actual object

creation.

Example:

1 #include

#include

#include

#include

#include

12

}

13

14

15

16

auto z(factory<std::complex<double>>(1.0i));

18 std::cout

<iostream><string><complex><utility><memory>

6

5

4

3

2

7
// Make an object of type T.

8 template<typename T, typename Arg>
9

std::shared_ptr<T> factory(Arg&& arg) {

10
return std::shared_ptr<T>(

11
new T(std::forward<Arg>(arg)));

int main() {

using namespace std::literals;auto s(factory<std::string>("Hello"s));

17

<< *s << ’ ’ << *z << ’\n’;

19 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 622

Perfect-Forwarding
Use Case:

Emplace Operations

Many container classes provide an operation that creates a new element

directly inside the container, often referred to as an emplace operation.

Some or all of the arguments to a member function performing an

emplace operation correspond to arguments for a constructor invocation.

Thus, an emplace operation typically employs perfect forwarding.

The member function performing the emplace operation forwards some or

all of its arguments to the constructor responsible for actually creating the

new object.

Some examples of emplace operations in the standard library include:

std::list class: emplace, emplace_back, emplace_front

std::vector class: emplace, emplace_back

std::set class: emplace, emplace_hint

std::forward_list class: emplace_front, emplace_after

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 623

Other
Perfect-Forwarding

Examples

std::thread constructor uses forwarding to pass through arguments to

thread function

std::packaged_task function-call operator uses forwarding to pass

through arguments to associated function

std::async uses forwarding to pass through arguments to specified

callable entity

std::make_unique forwards arguments to std::unique_ptr

constructor

std::make_shared forwards arguments to std::shared_ptr

constructor

std::make_pair forwards arguments to std::pair constructor

std::make_tuple forwards arguments to std::tuple constructor

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 624

Section 3.2.8

References

Copyright c
2015, 2016

Michael D.
Adams

625C++ Version: 2016-01-18

References I

1 S. Meyers, Universal References in C++11, C++ and Beyond, Asheville,

NC, USA, Aug. 5–8, 2012.

This talk discusses rvalue/forwarding references.

2 S. Meyers. Universal references in C++11.

Overload, 111:8–12, Oct. 2012.

3 S. Meyers, Adventures in Perfect Forwarding, Facebook C++ Conference,

Menlo Park, CA, USA, June 2, 2012.

This talk introduces perfect forwarding and discusses matters such as how to

specialize forwarding templates and how to address interactions between

forwarding and the pimpl idiom.

4 T. Becker, C++ Rvalue References Explained, 2013, http://thbecker.

net/articles/rvalue_references/section_01.html

5 E. Bendersky, Understanding Lvalues and Rvalues in C and C++, 2011,

http://eli.thegreenplace.net/2011/12/15/

understanding-lvalues-and-rvalues-in-c-and-c

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 626

References II

6 E. Bendersky, Perfect Forwarding and Universal References in C++, 2014,

http://eli.thegreenplace.net/2014/

perfect-forwarding-and-universal-references-in-c/

7
M. Kilpelainen. Lvalues and rvalues.

Overload, 61:12–13, June 2004.

8
H. E. Hinnant, Forward, ISO/IEC JTC1/SC22/WG21/N2951, Sept. 27,

2009, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2009/n2951.html

9
H. Hinnant and D. Krugler, Proposed Wording for US 90, ISO/IEC

JTC1/SC22/WG21/N3143, Oct. 15, 2010, http://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2010/n3143.html

Copyright c
2015, 2016

Michael D.
Adams

C++ 627Version: 2016-01-18

Section 3.3

Concurrency

Copyright c
2015, 2016

Michael D.
Adams

628C++ Version: 2016-01-18

Section 3.3.1

Preliminaries

Copyright c
2015, 2016

Michael D.
Adams

629C++ Version: 2016-01-18

Processors

Processor

Core 1 Core nCore 2 ···

A core is an independent processing unit that reads and executes

program instructions, and consists of registers, an arithmetic logic unit

(ALU), a control unit, and usually a cache.

A processor is a computing element that consists of one or more cores,

an external bus interface, and possibly a shared cache.

A thread is a sequence of instructions (which can be executed by a core).

At any given time, a core can execute one thread or, if the core supports

simultaneous multithreading (such as hyperthreading), multiple threads.

In the simultaneous multithreading case, the threads share the resources

of the core.

A processor with more than one core is said to be multicore.

Most modern processors are multicore.

Multicore processors can simultaneously execute multiple threads.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 630

Processors (Continued)

A multicore processor said to be homogeneous if all of its cores are

identical.

A multicore processor said to be heterogeneous if its has more than one

type of core.

Different types of cores might be used in order to:

provide different types of functionality (e.g., CPU and GPU)

provide different levels of performance (e.g., high-performance CPU and

energy-efficient CPU)

Copyright c
2015, 2016

Michael D.
Adams

631C++ Version: 2016-01-18

Memory Hierarchy

Core
L1 L2Excluding ···

LL BulkMain

Cache Cache Cache Cache StorageMemory

The component of a system that stores program instructions and data is

called main memory.

A cache is fast memory used to store copies of instructions and/or data

from main memory.

Main
memory

is very slow compared to the speed
of
a processor core.

Due to the latency of main memory, caches are essential for good

performance.

Instruction and data caches may be separate or unified (i.e., combined).

A cache may be local to single core or shared between two or more cores.

The lowest-level (i.e., L1) cache is usually on the core and local to the

core.

The higher-level (i.e., L2, L3,..., LL [last level]) caches are usually shared

between some or all of the cores.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 632

Examples of Multicore Processors

Intel Core i7-3820QM Processor (Q2 2012)

used in Lenovo W530 notebook

64 bit, 2.7 GHz

128/128 KB L1 cache, 1 MB L2 cache, 8 MB L3 cache

4 cores

8 threads (2 threads/core)

Intel Core i7-5960X Processor Extreme Edition (Q3 2014)

targets desktops/notebooks

64 bit, 3 GHz

256/256 KB L1 cache, 2 MB L2 cache, 20 MB L3 cache

8 cores

16 threads (2 threads/core)

Intel Xeon Processor E7-8890 v2 (Q1 2014)

targets servers

64 bit, 2.8 GHz

480/480 KB L1 cache, 3.5 MB L2 cache, 37.5 MB L3 cache

15 cores

30 threads (2 threads/core)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 633

Examples of Multicore
SoCs

Qualcomm Snapdragon 805 SoC (Q1 2014)

used in Google Nexus 6

32-bit 2.7 GHz quad-core Qualcomm Krait 450 (ARMv7-A)

16/16 KB L1 cache (per core), 2 MB L2 cache (shared)

600 MHz Qualcomm Adreno 420 GPU

Samsung Exynos 5 Octa 5433 SoC

used in Samsung Galaxy Note 4

high-performance 1.9 GHz quad-core ARM Cortex-A57 paired with

energy-efficient 1.3 GHz quad-core ARM Cortex-A53 (big.LITTLE); both

32-bit (64-bit capable but disabled) (ARMv8-A)

Cortex-A57: 48/32 KB L1 cache, 512 KB to 2 MB L2 cache?

700 MHz Mali-T760MP6 GPU

Apple A8 SoC (2014)

used in Apple iPhone 6, Apple iPhone 6 Plus

64-bit 1.4 GHz dual-core CPU (ARMv8-A)

64/64 KB L1 cache (per core), 1 MB L2 cache (shared), 4 MB L3 cache

PowerVR Series 6XT GX6450 (quad-core) GPU

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 634

Why
Multicore

Processors?

in
past, greater processing power obtained through higher clock rates

clock rates have stopped rising, topping out at about 5 GHz (little change

since about 2005)

power consumption is linear in clock frequency and quadratic in voltage,

but higher frequency typically requires higher voltage; so, considering

effect of frequency and voltage together, power consumption grows

approximately with cube of frequency

greater power consumption translates into increased heat production

higher clock rates would result
in

processors overheating

transistor counts still increasing (Moore’s law: since 1960s, transistor

count has doubled approximately every 18 months)

instead of increasing processing power by raising clock rate of processor

core, simply add more processor cores

n cores running at clock rate fuse significantly less power and generate

less heat than single core at clock rate nfgoing multicore allows for greater processing power with lower power

consumption and less heat production

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 635

Section 3.3.2

Multithreaded Programming

Copyright c
2015, 2016

Michael D.
Adams

636C++ Version: 2016-01-18

Concurrency

A thread is a sequence of instructions that can be independently

managed by the operating-system scheduler.

A process provides
the

resources that program needs
to

execute (e.g.,

address space, files, and devices) and at least one thread of execution.

All threads of a process share the same address space.

Concurrency is the situation where multiple threads execute over time

periods (i.e., from start
of

execution
to

end) that overlap (but no threads

are required to run simultaneously).

Parallelism refers to the situation where multiple threads execute

simultaneously.

Concurrency can be achieved with:

1 multiple single-threaded processes; or

2 a single multithreaded process.

A single multithreaded process is usually preferable, since data can be

shared more easily between threads in a single process, due to the

threads having a common address space.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 637

Why
Multithreading?

Keep all of the processor cores busy (i.e., fully utilize all cores).

Most modern systems have multiple processor cores, due to having either

multiple processors or a single processor that is multicore.

A single thread cannot fully utilize the computational resources available in

such systems.

Keep processes responsive.

In graphics applications, keep the GUI responsive while the application is

performing slow operations such as I/O.

In network server applications, keep the server responsive to new

connections while handling already established ones.

Simplify the coding of cooperating tasks.

Some programs consist of several logically distinct tasks.

Instead of having the program manage when the computation associated

with different tasks is performed, each task can be placed in a separate

thread and the operating system can perform scheduling.

For certain types of applications, multithreading can significantly reduce the

conceptual complexity of the program.

Copyright c
2015, 2016

Michael D.
Adams

638C++ Version: 2016-01-18

Section 3.3.3

Multithreaded Programming Models

Copyright c
2015, 2016

Michael D.
Adams

639C++ Version: 2016-01-18

Memory Model

A memory model (also known as a memory-consistency model) is a

formal specification of the effect of read and write operations on the

memory system, which in effect describes how memory appears to

programs.

A memory model is essential in order for the semantics of a multithreaded

program to be well defined.

The memory model must address issues such as:

ordering

atomicity

The memory model affects:

programmability (i.e., ease of programming)

performance

portability

Copyright c
2015, 2016

Michael D.
Adams

C++ 640Version: 2016-01-18

Sequential
Consistency

(SC)

The environment in which a multithreaded program is run is said to have

sequential consistency (SC) if the result of any execution of the program

is the same as if the operations of all threads are executed in some

sequential order, and the
operations

of
each individual thread appear

in

this sequence in the order specified by the program.

In other words, in a sequentially-consistent execution of a multithreaded

program, threads behave as if their operations were simply interleaved.

Consider the multithreaded program (with two threads) shown below,

where x, y, a, and b are all integer variables and initially zero.

Thread 1 Code

1;x

a = y;

=

Some sequentially-consistent executions of this program include:

Thread 2 Code

y = 1;

b = x;

x = 1;y = 1;b = x;a = y;

y = 1;x = 1;a =

x = 1;a = y;y =

y = 1;b = x;x =

y;b = x;

1;b = x;

1;a = y;

Copyright c
2015, 2016

Michael D.
Adams

641C++ Version: 2016-01-18

Sequential-Consistency (SC)
Memory Model

Since SC implies that memory must behave in a particular manner, SC

implicitly defines a memory model, known as the SC memory model.

In particular, SC implies that each write operation is atomic and becomes

visible to all threads simultaneously.

Thus, with the SC model, all threads see write operations on memory

occur atomically in the same order, leading to all threads having a

consistent view of memory.

The SC model precludes (or makes extremely difficult) many hardware

optimizations, such as:

store buffers

caches

out-of-order instruction execution

The SC model also precludes many compiler optimizations, including:

reordering of loads and stores

Although the SC model very is intuitive, it comes at a very high cost in

terms of performance.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 642

Load/Store Reordering Example: Single Thread

Consider the program with the code below, where x and y are integer

variables, all initially zero.

Original Thread 1 Code

x = 1;

y = 1;

// ...

Suppose that, during optimization, the compiler transforms the preceding

code
to

that shown below, effectively reordering two stores.

Optimized Thread 1 Code

y = 1;

x = 1;

// ...

The execution
of the

optimized code
is indistinguishable from

a

sequentially-consistent execution of the original code.

The optimized program runs as if it were the original program.

In
a single-threaded program, loads and stores can

be
reordered without

invalidating the SC model (if data dependencies are correctly considered).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 643

Consider the addition of a second thread to the program to yield the code

below.

Original Thread 1 Code

x = 1;

y = 1;

// ...

Load/Store Reordering
Example:

Multiple Threads

Thread 2 Code

if (y == 1) {

assert(x == 1);

}

Suppose that the compiler makes the same optimization to the code for

thread 1 as on the previous slide, yielding the code below.

Optimized Thread 1 Code

= 1;

x = 1;

// ...

y

(Unchanged) Thread 2 Code

if (y == 1) {

assert(x == 1);

}

Thread 2 can observe x and y being modified in the wrong order (i.e., an

order that is inconsistent with SC execution).

The assertion in thread 2 can never fail in the original program, but can

sometimes fail in the optimized program.

In a multithreaded program, the reordering of loads and stores must be

avoided if SC is to be maintained.

Copyright c
2015, 2016

Michael D.
Adams

644C++ Version: 2016-01-18

Store-Buffer Example:
Without Store

Buffer

Consider the program below, where x, y, a, and b are integer variables, all

initially zero.

Thread 1 Code

x = 1;

a = y;

Thread 2 Code

y = 1;

b = x;

Some possible sequentially-consistent executions of the program include:

x = 1;y = 1;b

y = 1;x =

x = 1;a =

y = 1;b = x;x

y;y

1;a

= x;a = y; (a is 1, b is 1)

= y;b = x; (a is 1, b is 1)

= 1;b = x; (a is 0, b is 1)

= 1;a = y; (a is 1, b is 0)

In every sequentially-consistent execution of the program, one of

“x = 1;” or “y = 1;” must execute first.

If “x = 1;” executes first, then b cannot be assigned 0.

If “y = 1;” executes first, then a cannot be assigned 0.

No sequentially-consistent execution can result in a and b both being 0.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 645

Store-Buffer Example: Store Buffer

Register

Processor

(1)
Store Buffer

Memory

x

write r to x

(2)

(2) flush store buffer to memory

(1) transfer data from register to store buffer

Copyright c
2015, 2016

Michael D.
Adams

646C++ Version: 2016-01-18

Store-Buffer Example: With Store Buffer (Not SC)

Core 1 Core 2 Memory

Code Store Buffer Code Store Buffer x y

x = 1; write 1 to xpending 0 0

no change y = 1; write 1 to ypending 0 0

a = y;//a = 0; no change no change 0 0

no change b = x;//b = 0; no change 0 0

write 1 to xcompleted no change 1 0

write 1 to ycompleted 1 1

The execution of the program results in a and b both being 0, which

violates SC.

The program behaves as if the lines of code in each thread were

reordered (i.e., reversed), yielding: a = y;b = x;x = 1;y = 1;.

A store buffer (or cache) must be avoided, if SC is to be maintained.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 647

Atomicity of
Memory Operations

A fundamental property of SC is that all memory operations are atomic.

Atomic memory operations require synchronization between processor

cores.

This synchronization greatly increases the time required to access

memory, as a result of the time needed by processor cores to

communicate and coordinate access to memory.

Therefore, requiring all memory operations to be atomic is not desirable.

Allowing non-atomic memory operations, however, would be inconsistent

with a fundamental property of SC.

Copyright c
2015, 2016

Michael D.
Adams

C++ 648Version: 2016-01-18

Data
Races

If memory operations are not all atomic, the possibility exists for

something known as a data race.

Two memory operations are said to conflict if they access the same

memory location and at least one of the operations is a write.

Two conflicting memory operations form a data race if they are from

different threads and can be executed at the same time.

A program with data races usually has unpredictable behavior (e.g., due

to torn reads, torn writes, or worse).

Example (data race):

Consider the multithreaded program listed below, where x, y, and z are

(nonatomic) integer variables shared between threads and are initially zero.

Thread 1 Codex = 1;a = y + z; Thread 2 Code

y = 1;

b = x + z;

The program has data races on both x and y.

Since z is not modified by any thread, z cannot participate in a data race.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 649

Torn
Reads

A torn read is a read operation that (due to lack of atomicity) has only

partially read its value when another (concurrent) write operation on the

same location is performed.

Consider a two-byte unsigned (big-endian) integer variable x, which is

initially 1234 (hexadecimal).

Suppose that the following (nonatomic) memory operations overlap in

time:

thread 1 reads x; and

thread 2 writes 5678 (hexadecimal) to x.

Initially, x
is
1234: Byte 0 Byte 1

12 34

Thread 1 reads 12 from the first byte of x.

Thread 2 writes 56 and 78 to the first and seconds bytes of x, respectively,

yielding:

Byte0 Byte

1

56 78

Thread 1 reads the second byte of x to obtain the value 78.

The value read by thread 1 (i.e., 1278) is neither the value of x prior to the

write by thread 2 (i.e., 1234) nor the value of x after the write by thread 2

(i.e., 5678).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 650

Torn Writes

A torn write is a write operation that (due to lack of atomicity) has only

partially written its value when another (concurrent) read or write

operation on the same location is performed.

Consider a two-byte unsigned (big-endian) integer variable x, which is

initially 0.

Suppose that the following (nonatomic) memory operations overlap in

time:

thread 1 writes 1234 (hexadecimal) to x; and

thread 2 writes 5678 (hexadecimal) to x.

Initially, x
is 0:

Byte 0 Byte 1

00 00

Thread 1
writes 12 to

the first byte
of x,

yielding:

Byte0 Byte

1

12 00

Thread 2 writes 56 and 78 to the first and second bytes of x, respectively,

yielding:

Byte0 Byte1

56 78

Thread 1
writes 34 to

the second byte
of x,

yielding:

Byte0 Byte

1

56 34

The resulting value in x (i.e., 5634) is neither the value written by thread 1

(i.e., 1234) nor the value written by thread 2 (i.e., 5678).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 651

SC Data-Race Free (SC-DRF)
Memory Model

From a programmability standpoint, SC is extremely desirable, as it allows

one to reason easily about the behavior of a multithreaded program.

Unfortunately, as we saw earlier, SC precludes almost all useful compiler

optimizations and hardware optimizations.

As it turns out, if we drop the requirement that all memory operations be

atomic and then restrict programs to be data-race free, SC can be

provided while still allowing most compiler and hardware optimizations.

This observation is the motivation behind the so called SC-DRF memory

model.

The sequential-consistency for data-race free programs (SC-DRF)

model provides SC
only for programs that are data-race free.

The data-race free constraint is not overly burdensome, since data races

will likely result in bugs anyhow.

Several programming languages have used SC-DRF as the basis for their

memory model, including C++, C, and Java.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 652

C++ Memory
Model

The C++ programming language employs, at its default memory model,

the SC-DRF model.

Again, with the SC-DRF model, a program behaves as if its execution is

sequentially consistent, provided that the program is data-race free.

Support is also provided for other (more relaxed) memory models.

For certain memory accesses, it is possible to override the default (i.e.,

SC-DRF) memory model, if desired.

The execution
of
a program that

is not
data-race

free
results

in undefined

behavior.

Copyright c
2015, 2016

Michael D.
Adams

C++ 653Version: 2016-01-18

Section 3.3.4

Thread Management

Copyright c
2015, 2016

Michael D.
Adams

654C++ Version: 2016-01-18

The std::thread Class

std::thread class provides means to create new thread of execution,

wait for thread to complete, and perform other operations to manage and

query state of thread

thread object may or may not be associated with thread (of execution)

thread object that is associated with thread said to be joinable

default constructor creates thread object that is unjoinable

can also construct thread object by providing callable entity (e.g.,

function or functor) and arguments (if any), resulting in new thread

invoking callable entity

thread function provided with copies of arguments so must use reference

wrapper class like std::reference_wrapper for reference semantics

thread class is movable but not copyable

each thread object has ID

IDs of joinable thread objects are unique

all unjoinable thread objects have same ID, distinct from ID of every

joinable thread object

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 655

The std::thread Class (Continued)

join operation waits for thread object’s thread to complete execution

and results in object becoming unjoinable

detach operation dissociates thread from thread object (allowing thread

to continue to execute independently) and results in object becoming

unjoinable

using thread object as source for move operation results in object

becoming unjoinable

if thread object joinable when destructor called, exception is thrown

hardware_concurrency member function returns number of hardware

threads that can run simultaneously (or zero if not well defined)

thread creation and join operations establish synchronizes-with

relationship (to be discussed later)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 656

std::thread Members

Member Types

Member Name Description

id thread ID type

native_handle_type system-dependent handle type for under

lying thread entity

Construction, Destruction, and Assignment

Member Name Description

constructor construct thread (overloaded)

destructor destroy thread

operator= move assign thread

Copyright c
2015, 2016

Michael D.
Adams

657C++ Version: 2016-01-18

std::thread Members

Member Functions

Member Name Description

joinable check if thread joinable

get_id get ID of thread

native_handle get native handle for thread

hardware_concurrency (static) get number of concurrent threads

supported by hardware

join wait for thread to finish executing

detach permit thread to execute indepen

dently

swap swap threads

Copyright c
2015, 2016

Michael D.
Adams

C++ 658Version: 2016-01-18

Example: Hello World With Threads

1 #include <iostream>2 #include <thread>

3

4 void hello()

5 {

6 std::cout << "Hello World!\n";7

}

8

9 int main()

10 {

11 std::thread t(hello);12 t.join();

13 }

1 #include <iostream>2 #include <thread>

3

4 int main()

5 {

6 std::thread t([](){

7 std::cout << "Hello World!\n";8 });

9 t.join();

10 }

Copyright c
2015, 2016

Michael D.
Adams

659C++ Version: 2016-01-18

Example: Thread-Function
Argument

Passing (Copy Semantics)

9

10

{

11

12

13 t1.join();

14 }

1 #include <iostream>2

#include <thread>

3

4
void doWork(int i, int j)

5 {

6 std::cout << i << ’ ’int main()int i = 42;

std::thread t1(doWork,

<< j << ’\n’;

7 }

8

i, 1);

Copyright c
2015, 2016

Michael D.
Adams

C++ 660Version: 2016-01-18

Example: Thread-Function Argument Passing (Reference Semantics)

1 #include <iostream>2 #include <vector>3 #include <functional>

4 #include <thread>56 void doWork(const std::vector<int>& v)

7 {

8 for (auto i : v) {

9 std::cout << i << ’\n’;

10 }

11 }

12

13 int main()

14 {
15

std::vector<int> v{1, 2, 3, 4};1617
// copy semantics

18 std::thread t1(doWork, v);

19 t1.join();

20

21 // reference semantics

22 std::thread t2(doWork, std::ref(v));

23 t2.join();

24 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 661

Example:
Thread-Function

Argument
Passing (MoveSemantics)

1 #include <iostream>2 #include <vector>3
#include <utility>

4 #include <thread>56 void doWork(std::vector<int>&& v)

7 {

8 for (auto i : v) {

9 std::cout << i << ’\n’;

10 }

11 }

12

13 int main()

14 {
15

std::vector<int> v{1, 2, 3, 4};1617 // move semantics

18 std::thread t1(doWork, std::move(v));

19 t1.join();

20 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 662

9
10

}
11

12

15

}

16

23 }

Example: Moving Threads

1 #include <thread>2

#include <iostream>3

#include <utility>

4

5
// Return a thread that prints a greeting message.

6 std::thread makeThread() {

7 return std::thread([](){

8 std::cout << "Hello World!\n";});

// Return the same thread that was passed as an argument.

13
std::thread identity(std::thread t) {

14 return t;

17 int main() {

18 std::thread t1(makeThread());

19 std::thread t2(std::move(t1));

20 t1 = std::move(t2);

21
t1 = identity(std::move(t1));

22 t1.join();

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 663

Example:
Lifetime

Bug

1 #include <iostream>

2 #include <vector>

3
#include <algorithm>

4 #include <chrono>

5 #include <thread>67 void threadFunc(const std::vector<int>* v) {

8
std::cout << std::accumulate(v->begin(), v->end(), 0)

9 << ’\n’;

10 }
11

12 void startThread() {

13 std::vector<int> v(1000000, 1);

14 std::thread t(threadFunc, &v);

15 t.detach();

16
// v is destroyed here but detached thread

17
// may still be using v

18 }
19

20 int main() {

21 startThread();

22
// Give the thread started by startThread

23
// sufficient time to complete its work.

24 std::this_thread::sleep_for(std::chrono::seconds(5));

25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 664

The
std::this_thread Namespace

Name Description

get_id get ID of current thread

yield suggest rescheduling current thread so as to allow

other threads to run

sleep_for blocks execution of current thread for at least

specified duration

sleep_until blocks execution of current thread until specified

time reached

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 665

Example:
Identifying

Threads

9

10

11

12 }
13

}

14

24 }

1 #include <thread>2

#include <iostream>

3

4 // main thread ID

5 std::thread::id mainThread;

6

7 void func() {

8
if (std::this_thread::get_id() == mainThread) {

std::cout << "called by main thread\n";} else {

std::cout << "called by secondary thread\n";

15 int main() {

16
mainThread = std::this_thread::get_id();

17 std::thread t([](){

18
// call func from secondary thread

19 func();

20 });

21 // call func from main thread

22 func();

23 t.join();

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 666

Thread Local Storage

thread storage duration: object allocated when thread begins and

deallocated when thread ends

each thread has its own instance of object

only objects declared thread_local have this storage duration

thread_local implies static for variable of block scope

thread_local can appear together with static or extern to

adjust linkage

example:

thread_local int counter = 0;

static thread_local int x = 0;

thread_local int y;

void func() {

thread_local int counter = 0;

// equivalent to:// static thread_local int counter = 0;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 667

13

}
14

24 }

Example: Thread Local Storage

1 #include <iostream>2

#include <vector>3

#include <thread>

4

5 thread_local int counter = 0;

6

7 void doWork(int id) {

8 static const char letters[] = "abcd";

9 for (int i = 0; i < 10; ++i) {

10 std::cout << letters[id] << counter << ’\n’;

11 ++counter;

12 }

15 int main() {

16 std::vector<std::thread> workers;17

for (int i = 1; i <= 3; ++i) {

18 // invoke doWork in new thread

19 workers.emplace_back(doWork, i);

20 }

21 // invoke doWork in main thread

22 doWork(0);23

for (auto& t: workers) {t.join();}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 668

Section 3.3.5

Sharing Data Between Threads

Copyright c
2015, 2016

Michael D.
Adams

669C++ Version: 2016-01-18

Shared Data

In multithreaded programs, it is often necessary to share resources

between threads.

Shared resources might include such things as variables, memory, files,

devices, and so on.

The sharing of resources, however, can lead to various problems when

multiple threads want access to the same resource simultaneously.

The most commonly shared resource is variables.

When variables are shared between threads, the possibility exists that one

thread may attempt to access a variable while another thread is modifying

the same variable.

Such conflicting accesses to
variables can

lead to
data corruption and

other problems.

More generally, when any resource is shared, the potential for problems

exists.

Therefore, mechanisms are needed for ensuring that shared resources

can be accessed safely.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 670

Race
Conditions

A race condition is a behavior where the outcome depends on the

relative ordering of the execution of operations on two or more threads.

Sometimes, a race condition may be benign (i.e., does not cause any

problem).

Usually, the term “race condition” used to refer to a race condition that is

not benign (i.e., breaks invariants or results in undefined behavior).

A data race is a particularly evil type of race condition.

A deadlock is a situation in which two or more threads are unable to make

progress due to being blocked waiting for resources held by each other.

A livelock is a situation in which two or more threads are not blocked but

are unable to make progress due to needing resources held by each

other.

Often, race conditions can lead to deadlocks, livelocks, crashes, and other

unpredictable behavior.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 671

Critical Sections

A critical section is a piece of code that accesses a shared resource

(e.g., data structure) that must not be simultaneously accessed by more

than one thread.

A synchronization mechanism is needed at the entry to and exit from a

critical section.

The mechanism needs to provide mutual exclusion (i.e., prevent critical

sections in multiple threads from executing simultaneously).

Example (FIFO queue):

One thread is adding an element to a queue while another thread is

removing an element from the same queue.

Since both threads modify the queue at the same time, they could corrupt

the queue data structure.

Synchronization must be employed so that the execution of the parts of the

code that add and remove elements are executed in a mutually exclusive

manner (i.e., cannot run at the same time).

Copyright c
2015, 2016

Michael D.
Adams

C++ 672Version: 2016-01-18

Data-Race Example

Shared (Global) Data

double balance = 100.00; // bank account balance

double credit = 50.00; // amount to deposit

double debit = 10.00; // amount to withdraw

Thread 1 Code// double tmp = balance;// tmp = tmp + credit;// balance = tmp;balance += credit; Thread 2 Code

// double tmp = balance;

// tmp = tmp - debit;

// balance = tmp;

balance -= debit;

above code has data race on balance object (i.e., more than one thread

may access balance at same time with at least one thread writing)

Copyright c
2015, 2016

Michael D.
Adams

673C++ Version: 2016-01-18

Example: Data
Race

(Counter)

9 }
10

}
11

12

13

std::thread t1(func);

14

15

t1.join();16

t2.join();

17 std::cout

18 }

1 #include <iostream>2

#include <thread>

3

4
unsigned long long counter = 0;

5

6 void func() {

7 for (int i = 0; i < 1000000; ++i) {

8
++counter;

int main() {

std::thread t2(func);

<< counter << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 674

Example: Data Race and/or
Race Condition

9

10

{s_.insert(i);}11

12 std::set<int> s_;
13

14
15

16

26 }

1 #include <thread>2

#include <iostream>3

#include <set>

4

5 class IntSet {

6
public:

7

bool contains(int i)

8 {return s_.find(i)void add(int i)

private:

!= s_.end();}

};

IntSet s;

17 int main() {

18 std::thread t1([](){

19 for (int i = 0;20

});

21 std::thread t2([](){

22 for (int i = 0;23

});

24 t1.join(); t2.join();

25 std::cout << s.contains(1000) << ’\n’;

const

i < 1000; ++i) s.add(2 * i);

i < 1000; ++i)

(IntSet)

s.add(2 * i + 1);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 675

Section 3.3.6

Mutexes

Copyright c
2015, 2016

Michael D.
Adams

676C++ Version: 2016-01-18

Mutexes

A mutex is a locking mechanism used to synchronize access to a shared

resource by providing mutual exclusion.

A mutex has two basic operations:

acquire: lock (i.e., hold) the mutex

release: unlock (i.e., relinquish) the mutex

A mutex can be held by only one thread at any given time.

If a thread attempts to acquire a mutex that is already held by another

thread, the operation will either block until the mutex can be acquired or

fail with an error.

A thread holding a (nonrecursive) mutex cannot relock the mutex.

A thread acquires the mutex before accessing the shared resource and

releases the mutex when finished accessing the resource.

Since only one thread can hold a mutex at any given time and the shared

resource is only accessed by the thread holding the mutex,

mutually-exclusive access is guaranteed.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 677

The std::mutex Class

std::mutex class provides mutex functionality

not movable and not copyable

lock member function acquires mutex (blocking as necessary)

unlock member function releases mutex

thread that owns mutex should not attempt to lock mutex again

all prior unlock operations on given mutex synchronize with lock

operation (on same mutex) (synchronizes-with relationship to be

discussed later)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 678

std::mutex Members

Member Types

Name Description

native_handle_type

tex entity

system-dependent handle type for underlying mu

Construction, Destruction, and Assignment

Name Description

constructor construct mutex

destructor destroy mutex

Other Member Functions

Name Description

lock acquire mutex, blocking if not available

try_lock try to lock mutex without blocking

unlock release mutex

native_handle get handle for underlying mutex entity

Copyright c
2015, 2016

Michael D.
Adams

C++ 679Version: 2016-01-18

Example: Avoiding Data Race Using Mutex (Counter) (mutex)

1 #include <iostream>2

#include <thread>3

#include <mutex>

4

5 std::mutex m;

6
unsigned long long counter = 0;

7

8 void func() {

for (int i =

11 ++counter;12

m.unlock(); // release mutex

13 }

14 }

9 0; i < 1000000; ++i) {

10 m.lock(); // acquire mutex

15

16 int main() {

17 std::thread t1(func);

18 std::thread t2(func);

19 t1.join();

20 t2.join();

21 std::cout << counter << ’\n’;22 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 680

The std::lock_guard Template Class

std::lock_guard is RAII class for mutexes

declaration:

template <class T> class lock_guard;

template parameter T specifies type of mutex (e.g., std::mutex,

std::recursive_mutex)

avoids problem of inadvertently forgetting to release mutex (e.g., due to

exception or forgetting unlock call)

constructor takes mutex as argument

not movable and not copyable

acquires mutex in constructor

releases mutex in destructor

since language ensures that all objects destroyed at end of lifetime,

release of mutex guaranteed (even if some code skipped due to thrown

exception)

advisable to use lock_guard instead of calling lock and unlock

explicitly

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 681

std::lock_guard
Members

Member Types

Name Description

mutex_type underlying mutex type

Construction, Destruction, and Assignment

Name Description

constructor construct lock guard

destructor destroy lock guard

Copyright c
2015, 2016

Michael D.
Adams

682C++ Version: 2016-01-18

9

10

11

std::lock_guard<std::mutex> lock(m);

12

13

14 }
15

}
16

23 }

Example: Avoiding Data Race Using Mutex (Counter) (lock_guard)

1 #include <iostream>2

#include <thread>3

#include <mutex>

4

5 std::mutex m;

6
unsigned long long counter = 0;

7

8 void func() {

for (int i = 0; i < 1000000; ++i) {

// lock_guard constructor acquires mutex

++counter;

// lock_guard destructor releases mutex

17 int main() {

18 std::thread t1(func);

19 std::thread t2(func);

20 t1.join();

21 t2.join();

22 std::cout << counter << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 683

:

::

#include <thread »

#include <iostream >

#include <set >

#include <mutex>

class Int Set {

public :

bool Contain S (int i) const {

Std : : lock_guard K Std :: mutex> lg (m_);

return S_. find (i.) l = S_. end ();

}

void add (int i) {

Std : : lock_guard & Std : ; mutex> lg (m_);

S_. in Sert (i) ;

}

private :

Std :: Set ‘int> S_;

mutable std:: mutex m_;

};

Int Set S;

int main () {

Std : : thread t1 ([] () {

for (int i = 0; i < 1000; ++ i) S. add (2 * i) ;

(| nt Set) (lock_guard)

28

29

30

31

32

});

St C : : thread t2 ([] () {

for (int i = 0; i < 1000; ++ i) S. add (2 * i + 1);

});

t1 . join () ; t2 ... join () ;

Std : : C out << S. Contains (1000) << * \n' ;

- L| º - E -

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

The std::unique_lock Template Class

std::unique_lock is another RAII class for mutexes

declaration:

template <class T> class unique_lock;

template parameter T specifies type of mutex (e.g., std::mutex,

std::recursive_mutex)

unlike case of std::lock_guard, in case of unique_lock do not have to

hold mutex over entire lifetime of RAII object

have choice of whether to acquire mutex upon construction

also can acquire and release mutex many times throughout lifetime of

unique_lock object

upon destruction, if mutex is held, it is released

since mutex is always guaranteed to be released by destructor, cannot

forget to release mutex

unique_lock is used in situations where want to be able to transfer

ownership of lock (e.g., return from function) or RAII object needed for

mutex but do not want to hold mutex over entire lifetime of RAII object

movable but not copyable

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 685

std::unique_lock Members

Member Types

Name Description

mutex_type underlying mutex type

Construction, Destruction, and Assignment

Name Description

constructor construct unique lock

destructor destroy unique lock

operator= move assign

Locking Functions

Name Description

lock acquire mutex, blocking if not available

try_lock try to lock mutex without blocking

try_lock_for try to lock mutex without blocking

try_lock_until try to lock mutex without blocking

unlock release mutex

Copyright c
2015, 2016

Michael D.
Adams

686C++ Version: 2016-01-18

std::unique_lock Members (Continued)

Observer Functions

Name Description

owns_lock tests if lock owns associated mutex

operator bool tests if lock owns associated mutex

Copyright c
2015, 2016

Michael D.
Adams

687C++ Version: 2016-01-18

Example: Avoiding Data Race Using Mutex (Counter) (unique_lock)

1 #include <iostream>

2 #include <thread>

3 #include <mutex>

4

5 std::mutex m;

6
unsigned long long counter = 0;

7

8 void func() {

9 for (int i = 0; i < 1000000; ++i) {

10
// Create a lock object without locking the mutex.

11 std::unique_lock<std::mutex> lock(m, std::defer_lock);

12 // ...

13 // Lock the mutex.

14 lock.lock();

15 ++counter;

16
// The unique_lock destructor releases the mutex.

17 }

18 }
19

20 int main() {

21 std::thread t1(func);

22 std::thread t2(func);

23 t1.join();

24 t2.join();

25 std::cout << counter << ’\n’;

26 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 688

The std::lock Template Function

std::lock variadic template function that can acquire multiple locks

simultaneously without risk of deadlock (assuming the only locks involved

are ones passed to lock)

declaration:

template <class T1, class T2,

void lock(T1&, T2&,

class...TN& ...);

takes as arguments one or more locks to be acquired

TN>

Copyright c
2015, 2016

Michael D.
Adams

689C++ Version: 2016-01-18

(Incorrect)

1 #include <thread »

2 #include <vector >

3 #include <mutex>

4

5 class BigBuf // A Big Buffer

6 {

7 public:

8 static constexpr int size () { return 16 × 1024 * 1024; }

9 BigBuf () : data_ (size ()) {}

10 BigBuf & operator= (const BigBuf &) = delete;

11 BigBuf & operator= (BigBuf & &) = delete;

12 void swap (BigBuf & other) {

13 if (this == & Other)

14 return;

15 // acquiring the two mutexes in this way can result in deadlock

16 Std : : lock_guard K Std : ; mutex> lock 1 (m_) ;

17 std:: lock_guard & Std :: mutex> lock 2 (other . m_);

18 Std : : S Wap (data_, Other . data_) ;

19 }

20 //

21 private :

22 Std : : vector <charX data_;

23 mutable std:: mutex m_;

24 };

25

26 BigBuf a ;

27 BigBuf b;

28

29 int main ()

30 {

31 St C : : thread t1 ([] () {

32 for (int i = 0; i < 100000; ++ i) a . swap (b);

33 });

34 Std : : thread t2 ([] () {

35 for (int i = 0; i < 100000; ++ i) b. swap (a);

36 });

37 t1 . join () ; t2 ... join () ;

38 }

- I - H - - - - - - E sº) o Gº

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

1 #include <thread »

2 #include <vector >

3 #include <mutex>

4

5 class BigBuf // A Big Buffer

6 {

7 public:

8 static constexpr int size () { return 16 × 1024 * 1024; }

9 BigBuf () : data_ (size ()) {}

10 BigBuf & operator= (const BigBuf &) = delete;

11 BigBuf & operator= (BigBuf & &) = delete;

12 void swap (BigBuf & other) {

13 if (this == & Other)

14 return;

15 Std : : unique_lock < Std : ; mutex> lock 1 (m_, Std : : defer lock);

16 Std : : unique_lock < Std : ; mutex> lock2 (Other . m_, Std : : defer_lock);

17 Std : : lock (lock 1, lock2);

18 Std : : S Wap (data_, Other . data_) ;

19 }

20 //

21 private :

22 Std : : vector <charX data_;

23 mutable std:: mutex m_;

24 };

25

26 BigBuf a ;

27 BigBuf b;

28

29 int main ()

30 {

31 St C : : thread t1 ([] () {

32 for (int i = 0; i < 100000; ++ i) a . swap (b);

33 });

34 Std : : thread t2 ([] () {

35 for (int i = 0; i < 100000; ++ i) b. swap (a);

36 });

37 t1 . join () ; t2 ... join () ;

38 }

- L| º - E -

Copyright © 2015, 2016 Michael D. Adams Version: 2016-01-18C++

The std::timed_mutex Class

std::timed_mutex class provides mutex that allows timeout to be

specified when acquiring mutex

if mutex cannot be acquired in time specified, acquire operation fails (i.e.,

does not lock mutex) and error returned

adds try_lock_for and try_lock_until member functions to try to

lock mutex with timeout

Copyright c
2015, 2016

Michael D.
Adams

692C++ Version: 2016-01-18

Example: Acquiring
Mutex With

Timeout
(std::timed_mutex)

1 #include <vector>

2

3 #include <thread>4

#include <mutex>

5 #include <chrono>

6

7 std::timed_mutex m;

8

9 void doWork() {

10 for (int i =

int count =

13

14

15

std::chrono::microseconds(1))) {++count;}16

std::cout17

}

int main() {

18

}
19

20

21

22 for (int i =

for (auto& t :

23

workers.emplace_back(doWork);24

}

25

26 }

#include <iostream>

0;

std::unique_lock<std::timed_mutex> lock(m,

12 std::defer_lock);

i < 10000; ++i) {

11

0;

while (!lock.try_lock_for(<< count << ’\n’;

std::vector<std::thread> workers;0;

i < 16; ++i) {

workers) {t.join();}

Copyright c
2015, 2016

Michael D.
Adams

693C++ Version: 2016-01-18

Recursive Mutexes

A recursive mutex is a mutex for which a thread may own multiple locks

at the same time.

After a mutex is first locked by thread A, thread A can acquire additional

locks on the mutex (without releasing the lock already held).

The mutex is not available to other threads until thread A releases all of its

locks on the mutex.

A recursive mutex is typically used when code that locks a mutex must call

other code that locks the same mutex (in order to avoid deadlock).

For example, a function that acquires a mutex and recursively calls itself

(resulting in the mutex being relocked) would need to employ a recursive

mutex.

A recursive mutex has more overhead than a nonrecursive mutex.

Code that uses recursive mutexes can often be more difficult to

understand and therefore more prone to bugs.

Consequently, the use of recursive mutexes should be avoided if possible.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 694

Recursive Mutex Classes

recursive mutexes provided by classes std::recursive_mutex and

std::recursive_timed_mutex

recursive_mutex class similar to std::mutex class except allows

relocking

recursive_timed_mutex class similar to std::timed_mutex class

except allows relocking

implementation-defined limit to number of levels of locking allowed by

recursive mutex

Copyright c
2015, 2016

Michael D.
Adams

C++ 695Version: 2016-01-18

Shared Mutexes

A shared mutex (also known as a multiple-reader/single-writer mutex)

is a mutex that allows both shared and exclusive access.

A shared mutex has two types of locks: shared and exclusive.

Exclusive lock:

Only one thread can hold an exclusive lock on a mutex.

While a thread holds an exclusive lock on a mutex, no other thread can hold

any type of lock on the mutex.

Shared lock:

Any number of threads (within implementation limits) can take a shared

lock on a mutex.

While any thread holds a shared lock on a mutex, no thread may take an

exclusive lock on the mutex.

A shared mutex would typically be used to protect shared data that is

seldom updated but cannot be safely updated if any thread is reading it.

A thread takes a shared lock for reading, thus allowing multiple readers.

A thread takes an exclusive lock for writing, thus allowing only one writer

with no readers.

A shared mutex need not be fair in its granting of locks (e.g., readers

could starve writers).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18
696

The std::shared_timed_mutex Class

std::shared_timed_mutex class provides shared mutex

shared_timed_mutex also allows timeout for acquiring mutex

Copyright c
2015, 2016

Michael D.
Adams

697C++ Version: 2016-01-18

std::shared_timed_mutex Members

Construction, Destruction, and Assignment

Name Description

constructor construct mutex

destructor destroy mutex

operator=[deleted] not movable or copyable

Exclusive Locking Functions

Name Description

lock acquire exclusive ownership of mutex, blocking if

not available

try_lock try to acquire exclusive ownership of mutex with

out blocking

try_lock_for try to acquire exclusive ownership of mutex with

out blocking

try_lock_until try to acquire exclusive ownership of mutex with

out blocking

unlock release exclusive ownership of mutex

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 698

std::shared_timed_mutex
Members

(Continued)

Shared Locking Functions

Name Description

lock_shared acquire shared ownership of mutex,

blocking if not available

try_lock_shared try to acquire shared ownership of mutex

without blocking

try_lock_shared_for try to acquire shared ownership of mutex

without blocking

try_lock_shared_until try to acquire shared ownership of mutex

without blocking

unlock_shared release shared ownership of mutex

Copyright c
2015, 2016

Michael D.
Adams

699C++ Version: 2016-01-18

The
std::shared_lock Template

Class

std::shared_lock is RAII class for shared mutexes

declaration:

template <class T> class shared_lock;

template parameter T specifies type of mutex (e.g.,

std::shared_timed_mutex)

similar interface as std::unique_lock but uses shared locking

constructor may optionally acquire mutex

may acquire and release mutex many times throughout lifetime of object

destructor releases mutex if held

all operations mapped onto shared locking primitives (e.g., lock mapped

to lock_shared, unlock mapped to unlock_shared)

for exclusive locking with shared mutexes, std::unique_lock and

std::lock_guard can be used

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 700

Example: std:

#include <thread »

#include <mutex>

#include <iostream >

#include <vector >

#include <shared mutex>

St C : ; mutex C OutMutex;

int Counter = 0;

Std :: Shared timed_mutex CounterMutex;

void Writer () {

for (int i = 0; i < 10; ++ i) {

{

std:: lock_guard ‘st d :: shared timed mutex> lock (counterMutex);

++ Counter;

}

std:: this thread : : sleep for (std:: chrono :: mill iseconds (100)) ;

}

20

21 void reader () {

22 for (int i = 0; i < 100; ++ i) {

23 int C ;

24 {

25 Std : : Shared lock < Std :: Shared timed mutex> lock (CounterMutex);

26 C = COunter;

27 }

28 {

29 std:: lock_guard & Std :: mutex> lock (coutMutex);

30 std:: cout << std:: this thread : : get_id () << ' ' << c << * \n' ;

31 }

32 Std :: this thread : ; Sleep_for (Std : : Chrono : : milli Seconds (10));

33 }

34 }

35

36 int main () {

37 St C : : Ve Ct Or & St C : : thread X threadS ;

38 threads . emplace_back (writer) ;

39 for (int i = 0; i < 16; ++ i) threads . emplace_back (reader) ;

40 for (auto& t. threads) t. join ();

41 } [- - - - -

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

std::once_flag and std::call_once

sometimes may want to perform action only once in code executed in

multiple threads

can be achieved through use of std::once_flag type in conjunction with

std::call_once template function

std::once_flag class represents flag used to track if action performed

declaration of std::call_once:

template <class Callable, class... Args>

void call_once(std::once_flag& flag, Callable&& f,

Args&&... args);

std::call_once invokes f only once based on value of flag object

first invocation of f is guaranteed to complete before any threads return

from call_once

useful for one-time initialization of dynamically generated objects

Copyright c
2015, 2016

Michael D.
Adams

702C++ Version: 2016-01-18

Example: One-Time
Action

1 #include <iostream>

2 #include <vector>

3 #include <thread>

4 #include <mutex>

5

6 std::once_flag flag;

78 void worker(int id) {

9 std::call_once(flag, [id](){

10
// This code will be invoked only once.

11 std::cout << "first: " << id << ’\n’;12 });

13 }

14

15 int main() {

16 std::vector<std::thread> threads;

17 for (int i = 0; i < 16; ++i) {

18 threads.emplace_back(worker, i);
19 }

20 for (auto& t: threads) {

21 t.join();

22 }

23 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 703

Example: One-Time
Initialization

1

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 704

Static Local Variable Initialization and Thread Safety

initialization of static local object is thread safe

object is initialized first time control passes through its declaration

object deemed initialized upon completion of initialization

if control enters declaration concurrently while object being initialized,

concurrent execution waits for completion of initialization

code like following is thread safe:

const std::string& meaningOfLife() {

static const std::string x("42");

return x;

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 705

Section 3.3.7

Condition Variables

Copyright c
2015, 2016

Michael D.
Adams

706C++ Version: 2016-01-18

Condition Variables

In concurrent programs, the need often arises for a thread to wait until a

particular event occurs (e.g., I/O has completed or data is available).

Having a thread repeatedly check for the occurrence
of

an event can
be

inefficient (i.e.,
can

waste processor resources).

It is often better to have the thread block and then only resume execution

after the event of interest has occurred.

A condition variable is a synchronization primitive that allows threads to

wait (by blocking) until a particular condition occurs.

A condition variable corresponds to some event of interest.

A thread that wants to wait for an event, performs a wait operation on the

condition variable.

A thread that wants to notify one or more waiting threads of an event

performs a signal operation on the condition variable.

When a signalled thread resumes, however, the signalled condition is not

guaranteed to be true (and must be rechecked), since another thread may

have caused condition to change.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 707

The std::condition_variable Class

std::condition_variable class provides condition variable

not movable and not copyable

wait, wait_for, and wait_until member functions used to wait for

condition

notify_one and notify_all used to signal waiting thread(s) of

condition

must re-check condition when awaking from wait since:

spurious awakenings are permitted

between time thread is signalled and time it awakens and locks mutex,

another thread could cause condition to change

concurrent invocation is allowed for notify_one, notify_all, wait,

wait_for, wait_until

each of wait, wait_for, and wait_until atomically releases mutex and

blocks

notify_one and notify_all are atomic

Copyright c
2015, 2016

Michael D.
Adams

C++ 708Version: 2016-01-18

std::condition_variable Members

Member Types

Name Description

native_handle_type system-dependent handle type for underlying con

dition variable entity

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator=[deleted] not movable or copyable

Copyright c
2015, 2016

Michael D.
Adams

C++ 709Version: 2016-01-18

std::condition_variable
Members

(Continued)

Notification and Waiting Member Functions

Name Description

notify_one notify one waiting thread

notify_all notify all waiting threads

wait blocks current thread until notified

wait_for blocks current thread until notified or specified duration

passed

wait_until blocks current thread until notified or specified time point

reached

Native Handle Member Functions

Name Description

native_handle get native handle associated with condition vari

able

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 710

Example: Condition Variable (Intstack)

#include <iostream >

#include <vector >

#include <thread »

#include <mutex>

#include <condition_variable >

class IntStack (

public :

Int Stack () { };

Int Stack (const Int Stack &) = delete;

Int Stack & operator= (const Int Stack &) = delete;

int pop () {

Std : : unique_lock < Std : ; mutex> lock (m_) ;

C_. Wait (lock, [this j () { return v_. empty () ; });

int x = v_. back () ;

V_. pOp_b a Ck () ;

return x;

}

void push (int x) {

20 std:: lock_guard & Std : ; mutex> lock (m_);

21 V_. push back (X) ;

22 C_. notify One ();

23 }

24 private:

25 Std : : vector <int> v_j

26 mutable Std : ; mutex m_;

27 mutable std:: condition_variable c_; // not empty

28 };

29

30 constexpr int numIters = 1000;

31 Int Stack S ;

32

33 int main () {

34 St C : : thread t1 ([] () {

35 for (int i = 0; i < numlters; ++ i) s. push (2 * i + 1);

36 });

37 Std : : thread t2 ([] () {

38 for (int i = 0; i < numlters; ++ i) std:: cout << S. pop () << * \n' ;

39 });

º } t1 ... join () ; t2 ... join (); - […] [H] = ′ = E sº) o Gº

Copyright © 2015, 2016 Michael D. Adams C++ Version: 2016-01-18

The
std::condition_variable_any Class

with std::condition_variable class,

std::unique_lock<std::mutex> class must be used for wait operation

std::condition_variable_any class allows any mutex type (meeting

certain basic requirements) to be used

interface of std::condition_variable_any class similar to that of

std::condition_variable class

prefer condition_variable to condition_variable_any since former

may be more efficient

Copyright c
2015, 2016

Michael D.
Adams

712C++ Version: 2016-01-18

Section 3.3.8

Promises and Futures

Copyright c
2015, 2016

Michael D.
Adams

713C++ Version: 2016-01-18

Promises and Futures

promise and future together form one-time communication channel for

passing result (i.e., value or exception) of computation from one thread to

same or another thread

promise: object associated with promised result (i.e., value or exception)

to be produced

future: object through which promised result later made available

shared state: holds promised result for access through future object

(shared by promise object and corresponding future object)

producer of result uses promise object to store result in shared state

consumer uses future object (corresponding to promise) to retrieve result

from shared state

Promise Future

Producer Consumer

State

Shared

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 714

Promises and Futures (Continued)

promises and futures useful in both single-threaded and multithreaded

programs

in single-threaded programs, might be used to propagate exception to

another part of program

in multithreaded program, often need arises to do some computation

asynchronously and then later get result when ready

requires synchronization between threads producing and consuming

result

thread consuming result must wait until result is available

must avoid data races when accessing result shared between threads

this type of synchronization can be accomplished via promise and future

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 715

The
std::promise Template

Class

std::promise provides access to promise-future shared state for writing

result

declaration:

template <class T> class promise;

T is type of result associated with promise (which can be void)

movable but
not copyable

set_value member function sets result to particular value

set_exception member function sets result to exception

can set result only once

get_future member function retrieves future associated with promise

get_future may be called only once

if promise object is destroyed before its associated result is set,

std::future_error exception will be thrown if attempt made to retrieve

result from corresponding future object

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 716

std::promise Members

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= move assignment

Copyright c
2015, 2016

Michael D.
Adams

717C++ Version: 2016-01-18

std::promise Members (Continued)

Other Functions

Name Description

swap swap two promise objects

get_future get future associated with promised

result

set_value set result to specified value

set_value_at_thread_exit set result to specified value while de

livering notification only at thread exit

set_exception set result to specified exception

set_exception_at_thread_exit set result to specified exception while

delivering notification only at thread

exit

Copyright c
2015, 2016

Michael D.
Adams

C++ 718Version: 2016-01-18

The std::future Template Class

std::future provides access to promise-future shared state for reading

result

declaration:

template <class T> class future;

T is type of result associated with future (which can be void)

movable but not copyable

get member function retrieves result, blocking if result not yet available

get may be called only once

wait member function waits for result to become available without

actually retrieving result

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 719

std::future Members

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= move assignment

Other Functions

Name Description

share transfer shared state to shared_future object

get get result

valid check if future object refers to shared state

wait wait for result to become available

wait_for wait for result to become available or time duration to expire

wait_until wait for result to become available or time point to be

reached

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 720

Example:
Promises

and Futures (Without
std::async)

1 #include <future>2

#include <thread>3

#include <iostream>4

#include <utility>

5

6
double computeValue() {

7 return 42.0;

8 }

9

10
void produce(std::promise<double> p) {

11
// write result to promise

12 p.set_value(computeValue());
13

}

14

15 int main() {

16 std::promise<double> p;

17
auto f = p.get_future(); // save future before move

18
std::thread producer(produce, std::move(p));

19
std::cout << f.get() << ’\n’;

20
producer.join();

21 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 721

The
std::shared_future Template Class

std::shared_future similar to future except object can be copied

shared_future object can be obtained by using share member function

of future class to transfer contents of future object into

shared_future object

shared_future is copyable (unlike future)

allows multiple threads to wait for same result (associated with

shared_future object)

get member can be called multiple times

Copyright c
2015, 2016

Michael D.
Adams

C++ 722Version: 2016-01-18

Example:
std::shared_future

1 #include <iostream>2

#include <vector>3

#include <thread>4

#include <future>

5

6 void consume(std::shared_future<int> f) {

7
std::cout << f.get() << ’\n’;

8

}

9

10 int main() {

11 std::promise<int> p;

12 std::shared_future<int> f = p.get_future().share();

13 std::vector<std::thread> consumers;14

for (int i = 0; i < 16; ++i) {

15 consumers.emplace_back(consume, f);
16

}

17
p.set_value(42);

18 for (auto& i : consumers) {

19 i.join();

20 }

21 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 723

The std::async Template Function

std::async template function used to launch callable entity (e.g.,

function or functor) asynchronously

declaration (uses default launch policy):

template <class Func, class... Args>

future<typename result_of<typename decay<Func>::type(

typename decay<Args>::type...)>::type>

async(Func&& f, Args&&... args);

declaration (with launch policy parameter):

template <class Func, class... Args>

future<typename result_of<typename decay<Func>::type(

typename decay<Args>::type...)>::type>

async(launch policy, Func&& f, Args&&... args);

numerous launch policies supported via bitmask std::launch

if async bit set, execute on new thread

if deferred bit set, execute on calling thread when result needed

if multiple bits set, implementation free to choose between them

in asynchronous execution case, essentially creates promise to hold result

and returns associated future; launches thread to execute function/functor

and sets promise when function/functor returns

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 724

The std::async Template Function (Continued)

future (i.e., future and shared_future) objects created by async

function have slightly different behavior than future objects created in

other ways

in case of future object created by async function: if future object is last

future object referencing its shared state, destructor for future object will

block until result associated with future object becomes ready

Copyright c
2015, 2016

Michael D.
Adams

C++ 725Version: 2016-01-18

Example:
Promises

and Futures (With
std::async)

9

10

11

12

13 }

1 #include <future>2

#include <iostream>

3

4
double computeValue() {

5 return 42.0;

6 }

7

8 int main() {

// invoke computeValue function asynchronously in

// separate thread

auto f = std::async(std::launch::async, computeValue);std::cout << f.get() << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 726

Example: Futures and Exceptions

9

10

11

}

12
13

}

14

15

28 }

1 #include <iostream>2

#include <vector>3

#include <cmath>4

#include <future>5

#include <stdexcept>

6

7
double squareRoot(double x) {

8

int

if (x < 0.0) {

throw std::domain_error("square root of negative number");

return std::sqrt(x);

main() {

16 std::vector<double> values{1.0, 2.0, -1.0};17

std::vector<std::future<double>> results;18

for (auto x : values) {

19 results.push_back(std::async(squareRoot, x));

20 }

21 for (auto& x : results) {

22
try {

23
std::cout << x.get() << ’\n’;

24 } catch (const std::domain_error&) {

25 std::cout << "error\n";26

}

27 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 727

The
std::packaged_task Template Class

std::packaged_task template class provides wrapper for callable entity

(e.g., function or functor) that makes return value available via future

declaration:

template <class R, class... Args>class packaged_task<R(Args...)>;

template parameters R and Args specify return type and arguments for

callable entity

similar to std::function except return value of wrapped function made

available via future

packaged task often used as thread function

movable but not copyable

get_future member retrieves future associated with packaged task

get_future can be called only once

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 728

std::packaged_task Members

Construction, Destruction, and Assignment

Name Description

constructor construct object

destructor destroy object

operator= move assignment

Other Functions

Name Description

valid check if task object currently associated

with shared state

swap swap two task objects

get_future get future associated with promised result

operator() invoke function

make_ready_at_thread_exit invoke function ensuring result ready only

once current thread exits

reset reset shared state, abandoning any previ

ously stored result

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 729

Example:
Packaged Task

#include <iostream>1

2 #include <thread>3 #include <future>4
#include <utility>

5 #include <chrono>67
int getMeaningOfLife() {

8
// Let the suspense build before providing the answer.

9 std::this_thread::sleep_for(std::chrono::milliseconds(

10 1000));11 // Return the answer.

12 return 42;

13 }

14

15 int main() {

16 std::packaged_task<int()> pt(getMeaningOfLife);

17 // Save the future.

18
auto f = pt.get_future();

19
// Start a thread running the task and detach the thread.

20
std::thread t(std::move(pt));

21 t.detach();22 // Get the result via the future.

23
int result = f.get();

24
std::cout << "The meaning of life is " << result << ’\n’;25 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 730

Example:
Packaged Task With Arguments

1 #include <iostream>2 #include <cmath>3 #include <thread>

4 #include <future>56
double power(double x, double y) {

7
return std::pow(x, y);

8 }

9

double)> task(power);

2.0,

10 int main() {

11 // invoke task in main thread

12 std::packaged_task<double(double,13 task(0.5, 2.0);

14
std::cout << task.get_future().get() << ’\n’;

15 // reset shared state

16 task.reset();

17 // invoke task in new thread

18
auto f = task.get_future();

0.5);19 std::thread t(std::move(task),20 t.detach();

21
std::cout << f.get() << ’\n’;22 }

Copyright c
2015, 2016

Michael D.
Adams

731C++ Version: 2016-01-18

Section 3.3.9

Atomics

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 732

Atomics

To avoid data races when sharing data between threads, it is often

necessary to employ synchronization (e.g., by using mutexes).

Atomic types are another mechanism for providing synchronized access

to data.

An operation that is indivisible is said to be atomic (i.e., no parts of any

other operations can interleave with any part of an atomic operation).

Most processors support atomic memory operations via special machine

instructions.

Atomic memory operations cannot result in torn reads or torn writes.

The standard library offers the following types in order to provide support

for atomic memory operations:

std::atomic_flag

std::atomic

These types provide a uniform interface for accessing the atomic memory

operations of the underlying hardware.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 733

Atomics
(Continued)

An atomic type provides guarantees regarding:

1 atomicity; and

2
ordering.

An ordering guarantee specifies the manner in which memory operations

can become visible to threads.

Several memory ordering schemes are supported by atomic types.

The default memory order is sequentially consistent

(std::memory_order_seq_cst).

Initially, only this default will be considered.

Copyright c
2015, 2016

Michael D.
Adams

C++ 734Version: 2016-01-18

The std::atomic_flag Class

std::atomic_flag provides flag with basic atomic operations

flag can be in one of two states: set (i.e., true) or clear (i.e., false)

two operations for flag:

test and set: set state to true and query previous state

clear: set state to false

default constructor initializes flag to unspecified state

not movable and not copyable

implementation-defined macro ATOMIC_FLAG_INIT can be used to set

flag to clear state in (static or automatic) initialization using statement of

the form “std::atomic_flag f = ATOMIC_FLAG_INIT;”

guaranteed to be lock free

intended to be used as building block for higher-level synchronization

primitives, such as spinlock mutex

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 735

std::atomic_flag Members

Member Functions

Member Name Description

constructor constructs object

clear atomically sets flag to false

test_and_set atomically sets flag to true and obtains its pre

vious value

Copyright c
2015, 2016

Michael D.
Adams

736C++ Version: 2016-01-18

Example: Suboptimal Spinlock Mutex

1 #include <iostream>2

#include <thread>3

#include <atomic>4

#include <mutex>

5

6
class SpinLockMutex {

7
public:

8

SpinLockMutex() {f_.clear();}

9 void lock() {while (f_.test_and_set()) {}}

10 void unlock() {f_.clear();}

11
private:

12

std::atomic_flag f_; // true if thread holds mutex

};

unsigned long long counter = 0;

13

14

15 SpinLockMutex m;
16

17

18 void doWork() {

19
for (unsigned long long i = 0; i < 100000ULL; ++i)

20 {std::lock_guard<SpinLockMutex> lock(m); ++counter;}

int main() {

std::thread t1(doWork), t2(doWork);

<< counter << ’\n’;

21

}

22

23

24

25

t1.join(); t2.join();

26 std::cout

}

default memory order
is

suboptimal (and
will be

revisited later)

27

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 737

Example: One-Time
Wait

1 #include <iostream>2

#include <atomic>3

#include <thread>4

#include <chrono>

5

6
// notReady flag initially not set

7
std::atomic_flag notReady = ATOMIC_FLAG_INIT;

8

int result = 0;

9

10 int main() {

11 notReady.test_and_set(); // indicate result not ready

12

});

17 std::thread consumer([](){

});

std::thread producer([](){

13 std::this_thread::sleep_for(std::chrono::seconds(1));

14 result = -42;

15 notReady.clear(); // indicate result ready

16

18
// loop until result ready

19
while (notReady.test_and_set()) {}

20 std::cout << result << ’\n’;

21

22
producer.join();

23

consumer.join();

24 }

This is not a particularly good use of atomic_flag.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 738

The
std::atomic Template Class

std::atomic class provides types with atomic operations

declaration:

template <class T> struct atomic;

provides object of type T with atomic operations

has partial specializations for integral types and pointer types

full specializations for all fundamental types

in order to use class type for T, T must be trivially copyable and bitwise

equality comparable

not required to be lock free

on most popular platforms atomic is lock free when T is built-in type

not move constructible and not copy constructible

assignable but assignment operator returns value not reference

most operations have memory order argument

default memory order is SC (std::memory_order_seq_cst)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 739

std::atomic Members

Basic

Member Name Description

constructor constructs object

operator= atomically store value into atomic object

is_lock_free check if atomic object is lock free

store atomically replaces value of atomic object

with given value

load atomically reads value of atomic object

operator T obtain result of load

exchange atomically replaces value of atomic object

with given value and obtain value of previ

ous value

compare_exchange_weak similar to exchange_strong but may fail

spuriously

compare_exchange_strong atomically compare value of atomic object

to given value and perform exchange if

equal or load otherwise

Copyright c
2015, 2016

Michael D.
Adams

C++ 740Version: 2016-01-18

std::atomic Members (Continued 1)

Fetch

Member Name Description

fetch_add atomically adds given value to value stored in atomic

object and obtains value held previously

fetch_sub atomically subtracts given value from value stored in

atomic object and obtains value held previously

fetch_and atomically replaces value of atomic object with bitwise

AND of atomic object’s value and given value, and ob

tains value held previously

fetch_or atomically replaces value of atomic object with bitwise

OR of atomic object’s value and given value, and ob

tains value held previously

fetch_xor atomically replaces value of atomic object with bitwise

XOR of atomic object’s value and given value, and ob

tains value held previously

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 741

std::atomic Members (Continued 2)

Increment and Decrement

Member Name Description

operator++ atomically increment the value of atomic object by

one and obtain value after incrementing

operator++(int) atomically increment the value of atomic object by

one and obtain value before incrementing

operator-- atomically decrement the value of atomic object by

one and obtain value after decrementing

operator--(int) atomically decrement the value of atomic object by

one and obtain value after decrementing

Copyright c
2015, 2016

Michael D.
Adams

742C++ Version: 2016-01-18

std::atomic Members (Continued 3)

Compound Assignment

Member Name Description

operator+= atomically adds given value to value stored in

atomic object

operator-= atomically subtracts given value from value stored

in atomic object

operator&= atomically performs bitwise AND of given value

with value stored in atomic object

operator|= atomically performs bitwise OR of given value with

value stored in atomic object

operatorˆ= atomically performs bitwise XOR of given value

with value stored in atomic object

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 743

Example: Atomic Counter

#include <iostream>1

2 #include <vector>

3 #include <thread>

4 #include <atomic>

5

6 class AtomicCounter {

7
public:

8 AtomicCounter() : c_(0) {}

9
int operator++() {return ++c_;}

10
int get() const {return c_.load();}

11 private:

12 std::atomic<int> c_;

13 };

14

15 AtomicCounter counter;

16

17 void doWork() {

18 for (int i = 0; i < 10000; ++i)19 }

20

21 int main() {

22 std::vector<std::thread> v;

23 for (int i = 0; i < 10; ++i)

24 {v.emplace_back(doWork);}

25
for (auto& t: v) {t.join();}

26
std::cout << counter.get() << ’\n’;27 }

{++counter;}

Copyright c
2015, 2016

Michael D.
Adams

C++ 744Version: 2016-01-18

Example: Atomic Increment With
Compare and Swap

1 #include <atomic>

2

3
template <class T>

4 void atomicIncrement(std::atomic<T>& x) {

5 T curValue = x;

6
while (!x.compare_exchange_weak(curValue,

7 curValue + 1)) {}

8 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 745

Example:
Counting

Contest

1 #include <iostream>2

#include <vector>3

#include <atomic>4

#include <thread>

5

6
constexpr int numThreads = 10;

7 std::atomic<bool> ready(false);

8 std::atomic<bool> done(false);

9 std::atomic<int> startCount(0);

10

11
void doCounting(int id) {

while (!ready) {}

for (volatile int i = 0; i < 20000; i++) {}

bool expected = false;

if (done.compare_exchange_strong(expected, true)){std::cout << "winner: " << id << ’\n’;}

12

++startCount;

13

14

15

16

17
18

}

19

20 int main() {

21 std::vector<std::thread> threads;22

for (int i = 0; i < numThreads; ++i)

23 {threads.emplace_back(doCounting, i);}
24

while (startCount != numThreads) {}

25
ready = true;

26
for (auto& t: threads) {t.join();}

27 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 746

An
Obligatory

Note on volatile

volatile qualifier not useful for multithreaded programming

volatile qualifier makes no guarantee of atomicity

can create object of volatile-qualified type whose size is sufficiently

large that no current processor can access object atomically

some platforms may happen to guarantee memory operations on

(suitably-aligned) int object to be atomic, but in such cases this is

normally
true even without volatile qualifier

volatile qualifier does not adequately address issue of memory

consistency

volatile qualifier does not imply use of memory barriers or other

mechanisms needed for memory consistency

optimizer and hardware might reorder operations (on non-volatile

objects) across operations on volatile objects

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 747

Section 3.3.10

Atomics and the Memory Model

Copyright c
2015, 2016

Michael D.
Adams

748C++ Version: 2016-01-18

Semantics of Multithreaded Programs

To be able to reason about the behavior of a program, we must know:

the order in which the operations of the program are performed; and

when the effects of each operation become visible to other operations in

the program, which may be performed in different threads.

In a single-threaded program, the ordering of operations and when the

effects of operations become visible is quite intuitive.

In a multi-threaded program, this matter becomes considerably more

complicated.

In what follows, we examine the above matter more closely (which

essentially relates to the memory model).

Copyright c
2015, 2016

Michael D.
Adams

C++ 749Version: 2016-01-18

Happens-Before Relationships

For two operations A and B performed in the same or different threads, A

is said to happen before B if the effects of A become visible to the thread

performing B before B is performed.

The happens-before relationship is not equivalent to “happens earlier in

time”.

If operation A happens earlier in time than operation B, this does not imply

that the effects of A must be visible to the thread performing B before B is

performed, due to the effects of caches, store buffers, and so on, which

delay the visibility of results.

Happening earlier in time is only a necessary but not sufficient condition

for a happens-before relationship to exist.

Happens-before relationships are not always transitive.

In the absence of something known as a dependency-ordered-before

relationship (to be discussed later), which arise relatively less frequently,

happens-before relationships are transitive (i.e., if A happens before B

and B happens before C then A happens before C).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 750

“Earlier
In

Time”
Versus

Happens
Before

Consider the multithreaded program (with two threads) shown below,

where x and y are integer variables, initially zero.

Thread 1 Code

x = 1; // A

Thread 2 Code

y = x; // B

Suppose that the run-time platform is such that memory operations on x

are atomic so the program is data-race free.

Consider what happens when the program executes with the particular

timing shown below, where operation A occurs earlier in time than

operation B.

Thread 1 (on Core 1)

Time x = 1; //A

↓

Thread 2 (on Core 2)

y = x; //B

The value read for x in operation B will not necessarily
be

1.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 751

Sequenced-Before Relationships

Given two operations A and B performed in the same thread, the

operation A is sequenced before B if A precedes B in program order (i.e.,

source-code order).

Sequenced-before relationships are transitive (i.e., if A is sequenced

before B, and B is sequenced before C, then A is sequenced before C).

Example: In the code below, statement A is sequenced before

statement B; B is sequenced before statement C; and, by transitivity, A is

sequenced before C.

x = 1; // A

y = 2; // B

z = x + 1; // C

Example:

Consider the line of code below, which performs (in order) the following

operations: 1) multiplication, 2) addition, and 3) assignment.

y = a * x + b; // (y = ((a * x) + b);

Multiplication is sequenced before addition.

Addition is sequenced before assignment.

Thus, by transitivity, multiplication is sequenced before assignment.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 752

Sequenced-Before Relationships (Continued)

For two operations A and B in
the same thread, if A is sequenced before B

then A happens before B.

In other words, program order establishes happens-before relationships

for operations within a single thread.

A sequenced-before relationship is essentially an intra-thread

happens-before relationship. (Note that “intra” means “within”.)

Example: In the code below, statement A is sequenced before

statement B. Therefore, A happens before B. Similarly, B happens before

statement C, and A happens before C.

= 1; // A

2; // B

x + 1; // C

x

y

z =

=

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 753

Inter-Thread
Happens-Before Relationships

Establishing whether a happens-before relationship exists between

operations in different threads is somewhat more complicated than the

same-thread case.

Inter-thread happens-before relationships establish happens-before

relationships for operations in different threads.

For two operations A and B in different threads,
if A inter-thread

happens before B then A happens before
B.

Inter-thread happens-before relationships are transitive (i.e., if A

inter-thread happens before B and B inter-thread happens before C then

A inter-thread happens before C).

Some form of synchronization is required to establish an inter-thread

happens-before relationship.

The various forms that this synchronization may take will be introduced on

later slides.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 754

Summary
of

Happens-Before Relationships

For two operations A and B in either the same or different threads, A

happens before B if:

1 A and B are in the same thread and A is sequenced before (i.e., intra-thread

happens before) B; or

2 A and B are in different threads and A inter-thread happens before B.

In other words, A happens before B if A either intra-thread happens before

or inter-thread happens before B.

Intra-thread happens-before (i.e., sequenced-before) relationships are

transitive.

Inter-thread happens-before relationships are transitive.

Happens-before relationships are mostly but not always transitive.

A happens-before relationship is important because it tells us if the result

of one operation can be seen by a thread performing another operation.

Copyright c
2015, 2016

Michael D.
Adams

755C++ Version: 2016-01-18

Synchronizes-With Relationships

A variety of relationships can imply an inter-thread happens-before

relationship, with one being the synchronizes-with relationship.

For two operations A and B in different threads,
if A synchronizes with B

then A inter-thread happens before B.

Example:

Consider the two-threaded program shown below, with the shared variable

x of type int, where x is initially zero.

Thread 1 Code1 x = 1;2 // A (call of foo)3 foo(); Thread 2 Code

1 bar();

2 // B (return from bar)

3 assert(x == 1);

Suppose that the call of the function foo is known to synchronize with the

return from the function bar, which implies that A synchronizes with B.

Since A synchronizes with B, A must inter-thread happen before B, which

implies that A happens before B.

Therefore, the assertion in thread 2 can never fail.

Copyright c
2015, 2016

Michael D.
Adams

C++ 756Version: 2016-01-18

Examples of
Synchronizes-With

Relationships

Thread creation. The completion of the constructor for a thread object T

synchronizes with the start of the invocation of the thread function for T.

Thread join. The completion of the execution of a thread function for a

thread object T synchronizes with (the return of) a join operation on T.

Mutex unlock/lock. All prior unlock operations on a mutexM

synchronize with (the return of) a lock operation on M.

Atomic. A suitably tagged atomic write operationW on a variable x

synchronizes with a suitably tagged atomic read operation on x that reads

the value stored byW (where the meaning of “suitably tagged” will be

discussed later).

Copyright c
2015, 2016

Michael D.
Adams

C++ 757Version: 2016-01-18

Synchronizes-With Relationship:
Thread Create and Join

#include <thread>1

2 #include <cassert>

3

4 int x = 0;

5

6 void doWork() {

7 // A1 (start of thread execution)

8
assert(x == 1); // OK: M1 synchronizes with A1

9 x = 2;

// A2 (end of thread execution)10

int main() {

x = 1;

std::thread t(doWork); // M1 (completion of constructor)

t.join(); // M2 (return from join)

assert(x == 2); // OK: A2 synchronizes with M2

11

}

12

13

14

15

16

17

18 }

since construction of thread (M1) synchronizes with start of thread function

execution (A1), M1 happens before A1 implying that assertion in doWork

cannot fail

since completion of execution of thread function (A2) synchronizes with

join operation (M2), A2 happens before M2 implying that assertion in

main cannot fail

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 758

Synchronizes-With Relationship: Mutex Lock/Unlock

Shared Data

std::mutex m;

int x = 0;

int y = 0;

Thread 1 Code

m.lock();

x = 1;

m.unlock();

Thread 2 Code

m.lock();

y = x;m.unlock();

Thread 1 Execution Thread 2 Execution

Copyright c
2015, 2016

Michael D.
Adams

759C++ Version: 2016-01-18

Memory Orders

Most operations on atomic types allow a memory order to be specified.

Example:

std::atomic<int> x = 0;

x.store(42, std::memory_order_seq_cst);int y = x.load(std::memory_order_seq_cst);

The following memory orders are supported:

sequentially consistent (std::memory_order_seq_cst)

acquire-release (std::memory_order_acq_rel)

acquire (std::memory_order_acquire)

release (std::memory_order_release)

consume (std::memory_order_consume)

relaxed (std::memory_order_relaxed)

Read operations can use the orders:

sequentially consistent, acquire, consume, and relaxed.

Write operations can use the orders:

sequentially consistent, release, and relaxed.

Read-modify-write operations can use:

all of the orders allowed for read and write operations; and

acquire-release.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 760

Memory Models

Although several memory orders can be employed for operations on

atomic types, these orders support four basic models:

1 sequentially consistent,

2 acquire release,

3 consume release, and

4 relaxed.

These models differ in the guarantees that they make regarding:

whether all writes to all atomic objects become visible to all threads

simultaneously (i.e., total order for all writes to all atomic objects); and

whether operations on atomic objects in different threads can establish a

synchronization relationship (namely, a synchronizes-with or

dependency-ordered-before [discussed later] relationship).

The models listed from strongest (i.e., makes the most guarantees) to

weakest (i.e., makes the least guarantees) are:

1 sequentially consistent,

2 acquire release,

3 consume release, and

4 relaxed.

Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18 761C++

Memory Models
(Continued 1)

These models are hierarchical in the sense that each model makes at

least all of the same guarantees as its weaker counterparts.

As we proceed from stronger to weaker models, more guarantees are lost.

A stronger model may require additional synchronization by hardware,

which can degrade performance.

A weaker model
may not provide sufficient guarantees for the correct

functioning of code.

Using a model that fails to provide sufficient guarantees for correct code

behavior will result
in bugs.

Also, as the model is weakened, it becomes more difficult to reason about

the behavior of code, leading to incomprehensible code and an increased

likelihood of (often very subtle) bugs.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 762

Modification
Order

All writes to a particular atomic objectM (over its lifetime) occur in some

particular total order, called its modification order.

Each atomic object has its own well-defined modification order.

For a particular atomic object M, all threads in a program are guaranteed

to see M change in a manner consistent with its modification order.

Essentially, this guarantee ensures that, once a given thread has seen a

particular value of an atomic object, a subsequent read by that thread

cannot retrieve an earlier value of the object.

If such a guarantee were not made, the memory model would be so weak

as to be impractical to use.

Modification order is primarily a conceptual tool that is useful for

describing memory-model behavior.

In practice, a thread is unlikely to actually observe every change in the

modification order of an object.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 763

Modification Order (Continued)

For each atomic object M, each thread has its own current position in

object’s modification order.

A thread’s current position in the modification order of a particular atomic

object need not be the same for all threads.

A read from an atomic objectM by a thread T can optionally move T’s

current position to a later position in the modification order of M and then

returns the value at the current position.

A write to an atomic objectM by a thread T appends the value to be

written to the modification order of M and updates T’s current position in

the modification order ofM to correspond to the value written.

An read-modify-write operation A on an atomic objectM reads the last

value in the modification order of M, modifies the value read appropriately,

appends the resulting value to the modification order of M, and updates

T’s current position in the modification order of M to correspond to the

value written.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 764

Modification Order Example

Consider an atomic objectM with the modification sequence:

0, 1, 2, 3, 4, 5, 6, 7, 8.

A thread could, for example, legitimately see M undergo any of the

following sequences of updates:

0, 4, 8

8

2, 7

0, 1, 2, 5, 7, 8

0, 1, 2, 3, 4, 5, 6, 7, 8

A thread would, for example, be guaranteed never to see M undergo any

of the following sequences of updates, as all of these sequences are

inconsistent with the modification order of M:

1, 0

1, 2, 1

42

0, 1, 2, 3, 4, 5, 6, 7, 6, 8

Copyright c
2015, 2016

Michael D.
Adams

765C++ Version: 2016-01-18

Relative
Ordering of Changes to

Different
Atomic Objects

Although each atomic object has its own well-defined modification order, it

is not necessarily the case that the modification orders for individual

objects can be combined into a single total order over all atomic objects.

Practically speaking, the reason for this is the delay in the visibility of

results introduced by store buffers, caches, and so on.

If a single total order for writes to all atomic objects is not guaranteed, this

implies that the relative order of changes to different atomic objects need

not appear the same to different threads.

Ensuring the existence of a single total order over all atomic objects would

require a significant amount of additional processor synchronization,

which can significantly degrade performance.

Therefore, this guarantee is not required to be made in all cases, the idea

being that we only ask for the guarantee when it is needed for correct

code behavior.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 766

Modification Order Revisited

Consider a program with two threads and two shared integer atomic

objects x and y, each having the modification order: 0, 1.

Suppose that no requirement is imposed to guarantee the existence of a

single total order on writes to all atomic objects.

Thread 1 could see x and y change in the following manner, consistent

with their stated modification order:

Variable Updates to Value Seen By Thread

x 0 1

y 0 1

Thread 2 could see x and y change in the following manner, consistent

with their stated modification order:

Variable Updates to Value Seen
By

Thread

x 0 1

y 0 1

Observe that thread 1 and thread 2 do not see x and y change in the

same order relative to one another (i.e., thread 1 sees x change before y,

while thread 2 sees y change before x).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 767

Sequentially-Consistent
Model

The sequentially-consistent model simply corresponds to the default

memory model for the language, namely, SC-DRF. (Since data races

cannot occur on atomic objects, SC-DRF degenerates into SC for such

objects.)

For the sequentially-consistent model, all memory operations (i.e., read,

write, and read-modify-write) must use the sequentially-consistent

memory order (std::memory_order_seq_cst).

A total ordering is guaranteed on all sequentially-consistent
writes to all

atomic objects.

All sequentially-consistent writes to atomic objects must become visible

to all threads simultaneously.

A sequentially-consistent write operationW on an atomic objectM (in one

thread) synchronizes with a sequentially-consistent operation on M (in

another thread) that reads the value written by W.

This model allows for relatively easy reasoning about code behavior.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 768

Example:
Sequentially-Consistent

Model

shared data:

x and y are of type std::atomic<int> and both are initially zero

thread 1 code (writes x):

x.store(1, std::memory_order_seq_cst);

thread 2 code (writes y):

y.store(1, std::memory_order_seq_cst);

thread 3 code (reads x then y):

int x1 = x.load(std::memory_order_seq_cst);

int y1 = y.load(std::memory_order_seq_cst);

thread 4 code (reads y then x):

int y2 = y.load(std::memory_order_seq_cst);

int x2 = x.load(std::memory_order_seq_cst);

memory order guarantees total order for all writes to all atomic objects

so, thread 3 and thread 4 must agree about order in which x and y are

modified

not possible to see x1 == 1 and y1 == 0 in thread 3 (implying x

modified before y) and x2 == 0 and y2 == 1 in thread 4 (implying y

modified before x)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 769

9

10

14

}
15

19

}
20

Example: Sequentially-Consistent Model

1 #include <atomic>2

#include <thread>3

#include <cassert>

4

5 std::atomic<int> x, y, c;

6

7
void w_x() {x.store(1, std::memory_order_seq_cst);}

8

void w_y() {y.store(1, std::memory_order_seq_cst);}

11
void r_xy() {

12
while (!x.load(std::memory_order_seq_cst)) {}

13
if (y.load(std::memory_order_seq_cst)) {++c;}

16
void r_yx() {

17
while (!y.load(std::memory_order_seq_cst)) {}

18
if (x.load(std::memory_order_seq_cst)) {++c;}

21 int main() {

22 x = 0; y = 0; c = 0;

23
std::thread t1(w_x), t2(w_y), t3(r_xy), t4(r_yx);

24 t1.join(); t2.join(); t3.join(); t4.join();

25 assert(c != 0); // assertion cannot fail

26 }

assertion cannot fail: when while loop in r_xy terminates, all threads must see x as nonzero; when while loop in r_yx terminates,

all threads must see y as nonzero; at least one of these must happen before if statements in both r_xy and r_yx executed

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 770

Acquire-Release Model

For the acquire-release model, the memory order is chosen as follows:

a read operation uses the acquire order (std::memory_order_acquire)

a write operation uses the release order (std::memory_order_release)

a read-modify-write operation uses one of the orders allowed for read and

write operations, or the acquire-release order

(std::memory_order_acq_rel), which results in read acquire and write

release.

No total ordering exists on all writes to all atomic objects (unlike in the

sequentially-consistent model).

Consequently, threads do not necessarily have to agree on the relative

order in which different atomics objects are modified.

A write-release operationW on an atomic objectM synchronizes with a

read-acquire operation onM that reads the value written byW (or a value

written by the release sequence headed by W).

The acquire-release model is useful for situations that involve pairwise

synchronization of threads, such as with mutexes.

With the acquire-release model, it is often still possible to reason about

code behavior without too much difficulty.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 771

Example: Acquire-Release Model

shared data:

x and y are of type std::atomic<int> and both are initially zero

thread 1 code (writes x):

x.store(1, std::memory_order_release);

thread 2 code (writes y):

y.store(1, std::memory_order_release);

thread 3 code (reads x then y):

int x1 = x.load(std::memory_order_acquire);int y1 = y.load(std::memory_order_acquire);

thread 4 code (reads y then x):

int y2 = y.load(std::memory_order_acquire);

int x2 = x.load(std::memory_order_acquire);

no ordering relationship between stores to x and y

so, thread 3 and thread 4 do not need to agree about order in which x and

y are modified

possible to see x1 == 1 and y1 == 0 in thread 3 (i.e., thread 3 sees x

change before y) and x2 == 0 and y2 == 1 in thread 4 (i.e., thread 4

sees y change before x)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 772

Example: Acquire-Release Model

#include <atomic>1

2 #include <thread>

3 #include <cassert>

4

5 std::atomic<int> x, y, c;

6

7
void w_x() {x.store(1, std::memory_order_release);}

8

9
void w_y() {y.store(1, std::memory_order_release);}

10

11 void r_xy() {

12
while (!x.load(std::memory_order_acquire)) {}

13
if (y.load(std::memory_order_acquire)) {++c;}

14 }
15

16 void r_yx() {

17
while (!y.load(std::memory_order_acquire)) {}

18
if (x.load(std::memory_order_acquire)) {++c;}

19 }
20

21 int main() {

x = 0; y = 0; c = 0;

std::thread t1(w_x),assert(c != 0); // assertion can fail

22

23

24

t1.join(); t2.join(); t3.join(); t4.join();

25

assertion can fail: one thread seeing x or y being nonzero does not imply

26 }

t2(w_y), t3(r_xy), t4(r_yx);

other thread sees sameCopyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18

773

9

10

}

11

12

13
14

15

16 SpinLockMutex m;
17

18

22

}
23

Example: Spinlock Mutex Using std::atomic_flag

1 #include <iostream>2

#include <thread>3

#include <atomic>

4

5
class SpinLockMutex {

6
public:

7

SpinLockMutex() {f_.clear();}

8 void lock() {

while (f_.test_and_set(std::memory_order_acquire)) {}

void unlock() {f_.clear(std::memory_order_release);}private:

std::atomic_flag f_; // true if thread holds mutex

};

unsigned long long counter = 0;

19 void doWork() {

20
for (unsigned long long i = 0; i < 100000ULL; ++i)

21 {m.lock(); ++counter; m.unlock();}

24

25

26

t1.join(); t2.join();27

std::cout28

}

int main() {

std::thread t1(doWork), t2(doWork);

<< counter << ’\n’;

uses acquire-release model

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 774

15

16

17
18

19

Example: Spinlock Mutex and std::lock_guard

1 #include <iostream>2

#include <thread>3

#include <atomic>4

#include <mutex>

5

6
class SpinLockMutex {

7
public:

8

SpinLockMutex() {f_.clear();}

9 void lock() {

10
while (f_.test_and_set(std::memory_order_acquire)) {}

11 }

12
void unlock() {f_.clear(std::memory_order_release);}

13

private:

14
std::atomic_flag f_; // true if thread holds mutex

};

SpinLockMutex m;

unsigned long long counter = 0;20

21

22
23

}

24

25

26

27

t1.join(); t2.join();28

std::cout29

}

void doWork() {

for (unsigned long long i = 0; i < 100000ULL; ++i)

{std::lock_guard<SpinLockMutex> lg(m); ++counter;}

int main() {

std::thread t1(doWork), t2(doWork);

<< counter << ’\n’;

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 775

Carries-A-Dependency Relationships

For two operations A and B performed in the same thread, A is said to

carry a dependency to B if the result of A is used as an operand for B

(ignoring some special cases).

Example: In the code below, statement A carries a dependency to

statement B but not statement C.

x = 42; // A

y = x + 1; // B

z = 0; // C

Note that “carries a dependency to” is a subset of “is sequenced before”

(i.e., the former implies the latter).

The carries-a-dependency-to relationship is transitive (i.e., if A carries a

dependency to B and B carries a dependency toC then A carries a

dependency to C).

Example: In the code below, statement A carries a dependency to

statement B; and B carries a dependency to statement C. Therefore,

transitively, A carries a dependency to C.

x = 42; // A

y = x + 1; // B

z = 2 * y; // C

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 776

Dependency-Ordered-Before Relationships

Another type of synchronization relationship is known as a

dependency-ordered-before relationship.

A write-release operation A is dependency ordered before a

read-consume operation B if B reads the value written by A (or any side

effect in the release sequence headed by A).

For two operations A and B performed in different threads, if A is

dependency ordered before B then A inter-thread happens before B.

Thus, dependency-ordered-before relationships can also establish

happens-before relationships.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 777

Inter-Thread
Happens-Before Relationships Revisited

The inter-thread happens before relation describes
an arbitrary

concatenation of sequenced-before, synchronizes-with, and

dependency-ordered-before relations, with two exceptions:

1 a concatenation is not permitted to end with dependency ordered before

followed by (one or more) sequenced before; and

2 a concatenation is not permitted to consist entirely of sequenced-before

relations.

The first restriction is required since a dependency-ordered-before

relationship synchronizes only data dependencies.

The second restriction is required since inter-thread happens-before

relationship must (by definition) involve operations in different threads.

Copyright c
2015, 2016

Michael D.
Adams

778C++ Version: 2016-01-18

Consume-Release Model

For the consume-release model, the memory order is chosen as follows:

a write operation uses release order (std::memory_order_release)

a read operation uses the consume order (std::memory_order_consume)

The consume-release model is identical to the acquire-release model with

one important difference, namely the type of synchronization relationship

established.

A write-release operationW is dependency ordered before a

read-consume operation (in a different thread) that reads the value stored

byW (or any side effect in the release sequence headed by W).

In other words, the consume-release model establishes a

dependency-ordered-before relationship, whereas the acquire-release

model establishes a synchronizes-with relationship.

In this sense, the consume-release model is weaker than the

acquire-release model (i.e., less data is synchronized).

Copyright c
2015, 2016

Michael D.
Adams

C++ 779Version: 2016-01-18

Example: Consume-Release
Model

1 #include <thread>2

#include <atomic>3

#include <cassert>

4

5 int x = 0;

6 std::atomic<int> y(0);

7

8
void producer() {

9 x = 42;

10 y.store(1, std::memory_order_release);

void consumer() {

int a;

while (!(a

11

}

1213

14

= y.load(std::memory_order_consume))) {}

42); // data race

15

assert(x ==16

int main() {

std::thread t1(producer);std::thread t2(consumer);

17

}

18

19

20

21

22

t1.join();

23 t2.join();

}

program has data race on x; a does not carry dependency to x so x = 42

does not necessarily happen before x used in assertion

if
consume changed

to
acquire,

no
data race

and
assertion cannot fail

24

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 780

Example:
Publishing

Data
Via Pointer

1 #include <thread>

2 #include <atomic>

3 #include <cassert>

4
#include <string>

5

6 std::atomic<std::string*> p(nullptr);

7 int x = 0;

8

9
void producer() {

10
std::string* s = new std::string("Hello");

11 x = 42;

12 p.store(s, std::memory_order_release);
13

}

14

15 void consumer() {

16
std::string* s;

17
while (!(s = p.load(std::memory_order_consume))) {}

18 assert(*s == "Hello");

19 // assert(x == 42); would result in data race
20

}
21

22 int main() {

23
std::thread t1(producer), t2(consumer);

24 t1.join(); t2.join();

25 }

assertion cannot fail; store to p is dependency ordered before load and

load carries dependency to *s in assertion

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 781

Relaxed
Model

For the relaxed model, all memory operations use the relaxed order

(std::memory_order_relaxed).

Like in the acquire-release model, no total order exists on updates to all

atomic objects (collectively).

Operations on the same variable within a single thread satisfy a

happens-before relationship (i.e., within a single thread, accesses to a

single atomic variable must follow program order).

Unlike in the acquire-release model, no inter-thread synchronization

relationship is established.

No requirement exists on the ordering relative to other threads.

The relaxed order is sometime suitable for updating counters (e.g., blind

event counters).

Except in very trivial cases, it can be extremely difficult to reason about

the meaning and/or correctness of code that uses relaxed order.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 782

Behavior
of

Relaxed
Model

consider atomic memory operations with relaxed order

for each individual atomic object, all threads have view of updates that is

consistent with single modification sequence

read operation (e.g., load):

if current position not set, return any element in sequence and set current

position to that of returned element

otherwise, either leave current position unchanged or move later in

sequence and return value at current position

write operation (e.g., store):

append value to end of sequence

set current position to correspond to appended value

read-modify-write operation (e.g., increment, decrement, exchange,

compare_exchange):

read last value from sequence

modify read value as appropriate to obtain new value

append new value to end of sequence

set current position to correspond to that of appended value

considerable flexibility in value returned by read

Copyright c
2015, 2016

Michael D.
Adams

C++ 783Version: 2016-01-18

Example: Relaxed Model

#include <atomic>1

2 #include <thread>

3 #include <cassert>

4

5 std::atomic<int> x, y, c;

6

7
void w_x() {x.store(1, std::memory_order_relaxed);}

8

9
void w_y() {y.store(1, std::memory_order_relaxed);}

10

11 void r_xy() {

12
while (!x.load(std::memory_order_relaxed)) {}

13
if (y.load(std::memory_order_relaxed)) {++c;}

14 }
15

16 void r_yx() {

17
while (!y.load(std::memory_order_relaxed)) {}

18
if (x.load(std::memory_order_relaxed)) {++c;}

19 }
20

21 int main() {

x = 0; y = 0; c = 0;

std::thread t1(w_x),assert(c != 0); // assertion can fail

22

23

24

t1.join(); t2.join(); t3.join(); t4.join();

25

assertion can fail: one thread seeing x or y being nonzero does not imply

26 }

t2(w_y), t3(r_xy), t4(r_yx);

other thread sees sameCopyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18

784

Example: Blind
Event Counters

12

}
13

1 #include <vector>2

#include <iostream>3

#include <thread>4

#include <atomic>

5

6 std::atomic<unsigned long long> counter(0);

7

8 void doWork() {

9
for (long i = 0; i < 100’000L; ++i) {

10 counter.fetch_add(1, std::memory_order_relaxed);

11 }

14

15 std::vector<std::thread>16

17 workers.emplace_back(doWork);

18 }

19

20 t.join();

21 }

22

23 }

int main() {

workers;for (int i = 0; i < 10; ++i) {

for (auto& t: workers) {

std::cout << "counter " << counter << ’\n’;

fetch_add can use relaxed order, since only incrementing counter blindly (i.e., not

taking action based on value of counter)

thread join operations provide synchronization to ensure desired value read for counter

when outputCopyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18

785

Example: Done Flag

1

Example: std::shared_ptr Reference
Counting

The copy constructor for shared_ptr (which increments a reference

count) would look something like:

// ...

controlBlockPtr = other->controlBlockPtr;

controlBlockPtr->refCount.fetch_add(1,

std::memory_order_relaxed);

// ...

The destructor for shared_ptr (which decrements a reference count)

would look something like:

// ...

if (!controlBlockPtr->refCount.fetch_sub(1,

std::memory_order_acq_rel)) {

delete controlBlockPtr;

}

// ...

The increment operation can use relaxed order, since no action is taken

based on the reference count value.

The decrement operation needs to use acquire-release order so that the

decrement cannot float and the correct view of the data is seen by the

thread doing the delete (all decrements form a synchronization chain).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 787

Release
Semantics for Memory Operations

Release semantics is a property that can only apply to operations that

write to memory (i.e., read-modify-write operations or plain writes).

A write operation that has release semantics is called a write release.

A write release operationW cannot be reordered with any read or write

operation that precedes W in program order (i.e., memory operations

cannot be moved from beforeW to after W).

The term release semantics originates from mutexes.

In the context of mutexes, the operations prior to a mutex release

operation, which correspond to operations in a critical section, must not be

moved after the mutex release operation, as operations after the mutex

release operation are not protected by the mutex.

(In Program Order)

Before

Moving memory operationsMoving memory operations

Write ReleaseAfter(In Program Order)
across the write release

allowed

in this direction is

across the write releasenot allowedin this direction is

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 788

Acquire
Semantics for

Memory
Operations

Acquire semantics is a property that can only apply to operations that

read from memory (i.e., read-modify-write operations or plain reads).

A read operation that has acquire semantics
is

called a read acquire.

A read acquire operation R cannot be reordered with any read or write

operation that follows R in program order (i.e., memory operations cannot

be moved from after R to before R).

The term acquire semantics originates from mutexes.

In the context of mutexes, the operations following a mutex acquire

operation, which correspond to operations in a critical section, must not be

moved before the mutex acquire operation, as operations before the

mutex acquire operation are not protected by the mutex.

(In Program Order)

Before

Read Acquire

After

Moving memory operations

across the read acquireallowedin this direction is

(In Program Order)

Moving memory operations

across the read acquire

not allowed

in this direction is

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 789

Release Sequences

A release sequence headed by a release operation A on an atomic object

M is a maximal contiguous subsequence of side effects in the

modification order of M, where the first operation is A, and every

subsequent operation

is performed by the same thread that performed A, or

is an atomic read-modify-write operation.

Copyright c
2015, 2016

Michael D.
Adams

790C++ Version: 2016-01-18

Release Sequence Example

1 #include <thread>2 #include <atomic>3 #include <cassert>45 int x = 0;

6 std::atomic<int> y(0);

78 int main() {

9 std::thread t1([](){

10 x = 42;

11
y.store(1, std::memory_order_release); // A

12
y.store(2, std::memory_order_relaxed); // B

13 });

14 std::thread t2([](){

15 int r;

16
while ((r = y.load(std::memory_order_acquire)) // C

17 < 2) {}

18 assert(x == 42);19 });

20 t1.join();

21 t2.join();

22 }

stores to y in A and B constitute release sequence headed by store in A

when while loop terminates, load in C will have read value written by store in B (not store in A)

A synchronizes with C, since C reads value in release sequence headed by A

assertion cannot fail, since A happens before C

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 791

Fences

A memory fence (also known as a memory barrier) is an operation that

causes the processor and compiler to enforce an ordering constraint on

memory operations issued before and after the fence operation.

Certain types of memory operations before a fence are guaranteed not to

be reordered with certain types of memory operations after the fence.

A fence may also introduce synchronizes-with relationships under certain

circumstances.

An acquire fence prevents the reordering of any read or write following

the fence (in program order) with any read prior to the fence (in program

order). (That is, a memory operation after the fence cannot be moved

before any read operation before the fence.)

A release fence prevents the reordering of any read or write prior to the

fence (in program order) with any write following the fence (in program

order). (That is, a memory operation before the fence cannot be moved

after any write operation after the fence.)

A fence is not a release or acquire operation. as it does not read/write

memory.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 792

std::atomic_thread_fence

memory fences can be inserted via function

std::atomic_thread_fence

declaration:

void atomic_thread_fence(std::memory_order order)

noexcept;

no effect if order is std::memory_order_relaxed

acquire fence if order is std::memory_order_acquire or

std::memory_order_consume

release fence if order is std::memory_order_release

both acquire and release fence if order is

std::memory_order_acq_rel

sequentially consistent acquire and release fence if order is

std::memory_order_seq_cst

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 793

Fences
and

Synchronizes-With Relationships

Release fence and acquire fence. A release fence A synchronizes with an

acquire fence B if there exist atomic operations X and Y, both operating

on some atomic object M, such that A is sequenced before X, X modifies

M, Y is sequenced before B, and Y reads the value written by X or a

value written by any side effect in the hypothetical release sequence X

would head if it were a release operation.

Release fence and acquire operation. A release fence A synchronizes

with an atomic operation B that performs an acquire operation on an

atomic objectM if there exists an atomic operation X such that A is

sequenced before X, X modifies M, and B reads the value written by X or

a value written by any side effect in the hypothetical release sequence X

would head if it were a release operation.

Release operation and acquire fence. An atomic operation A that is a

release operation on an atomic objectM synchronizes with an acquire

fence B if there exists some atomic operation X onM such that X is

sequenced before B and reads the value written by A or a value written by

any side effect in the release sequence headed by
A.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 794

12

}
13

14

15

16

17

18
19

}
20

21

22

23

24

t1.join(); t2.join();

25 }

Example: Incorrect Code
Without Fence

1 #include <thread>2

#include <atomic>3

#include <iostream>

4

5 std::atomic<bool> ready(false);

6 int data = 0;

7

8
void produce() {

9 data = 42; // write to data can move after store in A

10 // release fence needed here

11 ready.store(true, std::memory_order_relaxed); // A

void consume() {

while (!ready.load(std::memory_order_relaxed)) {} // B

// acquire fence needed here

std::cout << data << ’\n’;// read of data can move before load in B

int main() {

std::thread t1(produce);std::thread t2(consume);

atomic store (to ready) does not synchronize with atomic load (of ready),

due to relaxed order; results
in

race
on

data

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 795

Example: Correct Code With Fence

1 #include <thread>2

#include <atomic>3

#include <iostream>

4

5 std::atomic<bool> ready(false);

6 int data = 0;

7

8
void produce() {

9 data = 42;

10 std::atomic_thread_fence(std::memory_order_release);

11 ready.store(true, std::memory_order_relaxed);

void consume() {

while (!ready.load(std::memory_order_relaxed)) {}

<< data << ’\n’;

12

}
13

14

15

16

std::atomic_thread_fence(std::memory_order_acquire);

17 std::cout

int main() {

std::thread t1(produce);std::thread t2(consume);

18

}
19

20

21

22

23 t1.join(); t2.join();

24 }

release fence synchronizes with acquire fence, due to atomic load (of

ready) reading from result of atomic store (to ready)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 796

Memory Orders:
The Bottom Line

Use sequentially-consistent order unless there is a compelling case to do

otherwise.

In situations where semantics dictate a clear pairwise synchronization

between threads, consider the use of acquire-release order if it can be

easily seen to yield correct code.

Only consider relaxed order in situations where the performance penalty

of using a stronger order would be unacceptable.

Be very weary of using relaxed order. Even world experts on the C++

memory model acknowledge that this can be tricky.

Always have any code using relaxed order thoroughly reviewed by people

who are extremely knowledgeable about memory models.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 797

Section 3.3.11

References

Copyright c
2015, 2016

Michael D.
Adams

798C++ Version: 2016-01-18

References I

1 A. Williams. C++ Concurrency in Action.

Manning Publications, Shelter Island, NY, USA, 2012.

This is a fairly comprehensive book on concurrency and multithreaded

programming in C++. It is arguably the best book available for those who want to

learn how to write multithreaded code using C++. Excellent

2 M. J. Batty. The C11 and C++11 Concurrency Model.

PhD thesis, University of Cambridge, Cambridge, UK, Nov. 2014.

This very well written Ph.D. thesis introduces the C++11/C11 memory model and

presents work in mathematically formalizing, refining, and validating this model.

Excellent

3 M. Batty. Multicore Programming: C++0x.

University of Cambridge, Cambridge, UK, Nov. 2010.

This set of slides appear to have been used for part of a course on multicore

programming at the University of Cambridge.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 799

References II

4
M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann, Burlington, MA, USA, 2008.

A good reference for concurrent programming.

Copyright c
2015, 2016

Michael D.
Adams

800C++ Version: 2016-01-18

Talks I

1
Herb Sutter. atomic<> Weapons: The C++11 Memory Model and

Modern Hardware, C++ and Beyond, Asheville, NC, USA, Aug. 5–8, 2012.

(This talk is in two parts.)

2
Herb Sutter. C++ Concurrency, C++ and Beyond, Asheville, NC, USA,

Aug. 5–8, 2012.

3
Herb Sutter. Lock-Free Programming (Or, Juggling Razor Blades),

CppCon, 2014. (This talk is in two parts.)

4 Hans-J. Boehm. Threads and Shared Variables in C++11. Going Native,

Redmond, WA, USA, Feb. 2–3, 2012.

5 Mike Long. Introducing the C++ Memory Model. Norwegian Developers

Conference, Oslo, Norway, Jun. 15–19, 2014.

6
Herb Sutter. Machine Architecture and You: Things Your Programming

Language Never Told You. Northwest C++ Users’ Group, Redmond, WA,

USA, Sept. 19. 2007. http://nwcpp.org/september-2007.html.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 801

Talks
II

7 Pablo Halpern. Overview of Parallel Programming in C++, CppCon,

Bellevue, WA, USA, Sept. 8, 2014.

8 Valentin Ziegler. C++ Memory Model, Meeting C++, Berlin, Germany,

Dec. 6, 2014.

Copyright c
2015, 2016

Michael D.
Adams

802C++ Version: 2016-01-18

Part 4

Even More C++

Copyright c
2015, 2016

Michael D.
Adams

803C++ Version: 2016-01-18

Section 4.1

Undefined Behavior and Other Evil Stuff

Copyright c
2015, 2016

Michael D.
Adams

804C++ Version: 2016-01-18

Undefined, Unspecified, and Implementation-Defined

Behavior

undefined behavior: behavior for which standard imposes no

requirements (i.e., anything could happen)

unspecified behavior: behavior, for a well-formed program construct and

correct data, that depends on the implementation; implementation is not

required to document which behavior occurs; range of possible behaviors

usually specified in standard

implementation-defined behavior: behavior, for a well-formed program

construct and correct data, that depends on the implementation and that

each implementation documents (i.e., only know what will happen for a

particular implementation)

always avoid undefined behavior and do not rely on unspecified

behavior; otherwise cannot guarantee correct behavior of program

try to avoid relying on implementation-defined behavior; otherwise

cannot guarantee correct behavior of program across all language

implementations (i.e., code will not be portable)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 805

char*

dereferencing a null pointer; for example:

p

=char c

Examples of Undefined Behavior

nullptr;

= *p;

mutable data members):

// undefined behavior

const int x = 0;

const_cast<int&>(x)signed integer overflow = 42;

double z

double x =

attempting to modify a string literal or any other const object (excluding

// undefined behavior

= 0.0;

evaluating an expression that is not mathematically defined; for example:

1.0 / z;

int& increment(int& x) {

// undefined behavior

not returning a value from a value-returning function (other than main)

++x;

// undefined behavior

}

multiple definitions of the same entity

Copyright c
2015, 2016

Michael D.
Adams

806C++ Version: 2016-01-18

Examples of Undefined Behavior (Continued)

performing pointer arithmetic that yields a result before start of or after

int v[10];int* p =

&v[0];

--p;

end (i.e., one past last element) of an array; for example:

// undefined behavior

int i = 1;

i <<

using pointers to objects whose lifetime has ended

(-3);

left-shifting values by a negative amount; for example:

// undefined behavior

the number; for example:

int i = 1;

shifting values by an amount greater than or equal to the number of bits in

i << 10000;

example:

void func()

// undefined behavior

using an automatic variable whose value has not been initialized; for

{

int i; ++i;

}

// undefined behavior

Copyright c
2015, 2016

Michael D.
Adams

807C++ Version: 2016-01-18

Examples of
Unspecified Behavior

order in which arguments to a function are evaluated; for example:

1 #include <iostream>

2

3 int count() {

4 static int c = 0;

5 return c++;

6 }

7

8
void func(int x, int y) {

9
std::cout << x << ’ ’ << y << ’\n’;10 }

11

12 int main() {

13 func(count(), count());

14
// what values are passed to func?

15 // 0, 1; or 1, 0?

16 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 808

Examples of
Implementation-Defined Behavior

meaning of #pragma directive

nesting limit for #include directives

search locations for "" and <> headers

sequence of places searched for header

signedness of char

sizeof built-in types other than char, signed char,

unsigned char

type of size_t, ptrdiff_t

parameters to main function

alignment (i.e., restrictions on the addresses at which an object of a

particular type can be placed)

result of right shift of negative value

precise types used in various parts of C++ standard library (e.g., actual

type named by vector<T>::iterator)

meaning of asm declaration

for more examples, see “Index of implementation-defined behavior”

section in C++11 standard

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 809

Section 4.2

Best Practices, Tips, and Common Pitfalls

Copyright c
2015, 2016

Michael D.
Adams

810C++ Version: 2016-01-18

Use of std::istream::eof

do not use std::istream::eof to determine if earlier input operation

has failed, as this will not always work

eof simply returns end-of-file (EOF) flag for stream

EOF flag for stream can be set during successful input operation (when

input operation takes places just before end of file)

when stream extractors (i.e., operator>>) used, fields normally

delimited by whitespace

to read all data in whitespace-delimited field, must read one character

beyond field in order to know that end of field has been reached

if field followed immediately by EOF without any intervening whitespace

characters, reading one character beyond field will cause EOF to be

encountered and EOF bit for stream to be set

in preceding case, however, EOF being set does not mean that input

operation failed, only that stream data ended immediately after field that

was read

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 811

Example:
Incorrect Use of eof

example of incorrect use of eof:

1

9

10

11

12 }

13

14 }

15 }

#include <iostream>

2

3 int main() {

4 while (true) {

5 int x;

6 std::cin >> x;

7
// std::cin may not be in a failed state.

8 if (std::cin.eof()) {

// Above input operation may have succeeded.

std::cout << "EOF encountered\n";break;

std::cout << x << ’\n’;

code incorrectly assumes that eof will only return true if preceding input

operation has failed

last field in stream will be incorrectly ignored if not followed by at least one

whitespace character; for example, if input stream consists of three

character sequence ’1’, space, ’2’, program will output:

1

EOF encountered

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 812

Example: Correct Use of eof

to determine if input operation failed, simply check if stream in failed state

if stream already known to be in failed state and need to determine

specifically if failure due to EOF being encountered, then use eof

example of correct use of eof:

1 #include <iostream>

2

3 int main() {

4
int x;

5
// Loop while std::cin not in a failed state.

6 while (std::cin >> x) {

7
std::cout << x << ’\n’;

8

}

9 // Now std::cin must be in a failed state.

10
// Use eof to determine the specific reason

11 // for failure.

12 if (std::cin.eof()) {

13 std::cout << "EOF encountered\n";14 } else {

15
std::cout << "input error (excluding EOF)\n";

16 }

17 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 813

Use of
std::endl

std::endl is not some kind of string constant

std::endl is stream manipulator and declared as

std::ostream& std::endl(std::ostream&)

inserting endl to stream always (regardless of operating system)

equivalent to outputting single newline character ’\n’ followed by flushing

stream

flushing of stream can incur very substantial overhead; so only flush when

strictly necessary

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 814

Use of
std::endl (Continued)

some operating systems terminate lines with single linefeed character

(i.e., ’\n’), while other operating systems use carriage-return and

linefeed pair (i.e., ’\r’ plus ’\n’)

existence of endl has nothing to do with dealing with handling new lines

in operating-system independent manner

when stream opened in text mode, translation between newline characters

and whatever character(s) operating system uses to terminate lines is

performed automatically (both for input and output)

above translation done for all characters input and output and has nothing

to do with endl

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 815

Stream Extraction Failure

for built-in types, if stream extraction fails, value of target for stream

extraction depends on reason for failure

in following example, what is value of x if stream extraction fails:

int x;

std::cin >> x;

if (!std::cin) {

// what is value of x?

}

in above example, x may be uninitialized upon stream extraction failure

if failure due to I/O error or EOF, target of extraction is not modified

if failure due to badly formatted data, target of extraction is zero

if failure due to overflow, target of extraction is closest

machine-representable value

common error: incorrectly assume that target of extraction will always be

initialized if extraction fails

for class types, also dangerous to assume target of extraction always

written upon failure

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 816

Stream Extraction Failure (Continued)

1 #include <iostream>

2 #include <sstream>

3 #include <limits>

4 #include <cassert>5

6 int main() {

7 int x;

8

9 std::stringstream s0("");

10 x = -1;

11 s0 >> x;

12
// No data; x is not set by extraction.

13

assert(s0.fail() && x == -1);

14

15 std::stringstream s1("A");

16 x = -1;

17 s1 >> x;

18
// Badly formatted data; x is zeroed.

19

assert(s1.fail() && x == 0);20

21 std::stringstream

22 s2("99");23 x = -1;

24 s2 >> x;

25
// Overflow; x set to closest machine-representable value.

26 assert(s2.fail() && x == std::numeric_limits<int>::max());

27 }

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 817

The abs Function

What does the following program output when executed?

#include <iostream>#include <cstdlib>

int main(){std::cout << abs(-1.5) << ’\n’;}

In the preceding code, the abs function used might be the abs function in

the C standard library, which is declared as int abs(int). In this case,

the program would output a value of 1 (which is probably unexpected).

What does the following program output when executed?

#include <iostream>#include <cmath>

int main(){std::cout << std::abs(-1.5) << ’\n’;}

The abs function used in this case is an overload of the function abs from

the C++ standard library, declared as double abs(double). So, the

program outputs a value of 1.5 (as expected).

Perhaps, the best portable (correct) solution to this problem is to include

cmath and use std::abs instead of abs.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 818

Types
of

Literals

When specifying a literal, be careful to use a literal of the correct type, as

the type can often be quite important.

For example, what value will be printed by the following code and (more

importantly) why:

std::vector<double> values;values.push_back(0.5);

values.push_back(0.5);

// Compute the sum of the elements in the vector values.

double sum = std::accumulate(values.begin(),

values.end(), 0);

std::cout << sum << ’\n’;

Hint: The value printed for sum is not 1.

In order to determine what values will be printed, look carefully at the

definition of std::accumulate.

Answer: The value printed for sum is 0.

Copyright c
2015, 2016

Michael D.
Adams

C++ 819Version: 2016-01-18

Testing Failure State of
Streams

consider istream or ostream objects

!s is equivalent to s.fail()

bool(s) is not equivalent to s.good()

s.good() is not the same as !s.fail()

do not use good as opposite of fail since this is wrong

Copyright c
2015, 2016

Michael D.
Adams

820C++ Version: 2016-01-18

Member
Initialization Order

data members are initialized in order in which declared

Example:

1 #include <cassert>

2

3
class Widget {

4 public:

5

6 int x_;

7
int y_;

8 };

9

10 int main() {

11
Widget w;

12 }

what will above code do when run?

Widget() : y_(42), x_(y_ + 1) {assert(x_ == 43);}

in constructor, x_ initialized before y_, which results in use of y_ before its

initialization

strictly speaking, undefined behavior

in practice, likely x_ will simply have garbage value when body of

constructor executes and assertion will fail

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 821

Global Object Initialization Order

be careful about initialization order of global objects

Example (program with three source files):

1 int main() {

2 }

1 #include <vector>2 std::vector<int> v

= {1, 2, 3, 4};

1 #include <vector>

2 extern std::vector<int> v;

3 std::vector<int> w = {v[0], v[1]};

no guarantee that v will be constructed before w

bad things will happen if w is constructed before v

no guarantee about order of initialization between translation units (i.e.,

source files [loosely speaking])

Copyright c
2015, 2016

Michael D.
Adams

C++ 822Version: 2016-01-18

Implement
Postfix Increment/Decrement via Prefix

implement postfix increment/decrement in terms of prefix

increment/decrement

ensures that prefix and postfix versions always consistent

Example:

1 class Counter {

2 public:3

Counter(int count = 0) : count_(count) {}

4
Counter& operator++() {

5 ++count_;

6 return *this;

7 }

8
Counter operator++(int) {

Counter old(*this);

++(*this);return old;

9

10

11

12 }

// similarly for prefix/postfix decrement

private:

int count_;

13

14

15

16 };

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 823

Sizeof
Class

Versus
Sum of Member

Sizes

compilers can (and do) add padding to classes/structs

Example:

1 #include <iostream>2

3
class Widget {

4 // ...

5 private:6 char c;

7 int i;

8 };

9

10 int main() {

11
// two numbers printed not necessarily the same

12 std::cout << sizeof(char) + sizeof(int) << ’ ’ <<

13
sizeof(Widget) << ’\n’;

14
std::cout << alignof(int) << ’ ’ <<

15
alignof(Widget) << ’\n’;

16 }

many processors place alignment restrictions on data (e.g., data type of

size n must be aligned to start on address that is multiple of n)

other factors can also add to size of class/struct (e.g., virtual function table

pointer)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 824

Sizeof
Class

Versus
Sum of Member

Sizes

struct Thing { char c; int i; };

suppose sizeof(int) is 4 and alignof(int) is 4

implementation adds padding to structure so that int data member is

suitably aligned (i.e., offset is multiple of 4)

(Continued)

Copyright c
2015, 2016

Michael D.
Adams

825C++ Version: 2016-01-18

Division/Modulus Operator
and

Negative Numbers

for integral operands, division operator yields algebraic quotient with any

fractional part discarded (i.e., round towards zero)

if quotient a / b is representable in type of result,

(a / b) * b + a % b is equal to a

so, assuming b is not zero and no overflow, a % bequals

a - (a / b) * b

result of modulus operator not necessarily nonnegative

Example:

1 #include <cassert>

2

3 int main() {

== -2);

8 }

4 assert(5 % 3 == 2);

5 assert(5 % (-3)

==

2);

6 assert((-5) % 3

==

-2);

7 assert((-5) % (-3)

Copyright c
2015, 2016

Michael D.
Adams

826C++ Version: 2016-01-18

std::string Concatenation

What is wrong with the following code?

void func(const std::string&);

std::string s("one");

const char* p = "two";

func(std::string(s) + std::string(", ") + std::string(p));

func(std::string(p) + std::string(", ") + std::string(s));

Unnecessary temporaries!

Fix:

func(s + ", " + p);

func(p + ", "s + s);

Copyright c
2015, 2016

Michael D.
Adams

827C++ Version: 2016-01-18

std::vector<std::string> Insertion

What is wrong with the following code?

std::vector<std::string> v;

std::string s("one");

v.push_back(std::string(s));

v.push_back(std::string(s + ", two"));

v.push_back(std::string("three"));

v.push_back(std::string());

Again, unnecessary temporaries.

Fix:

v.push_back(s);

v.push_back(s + ", two")v.emplace_back("three");v.emplace_back();

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 828

Classes Holding Multiple
Resources

What is wrong with this code?

class TwoResources {

public:

TwoResources()

x_ = new X;

y_ = new Y;

: x_(nullptr) : y_(nullptr) {

}

˜TwoResources() {

delete x_;

delete y_;

}

private:

X* x_;

Y* y_;

};

If an exception is thrown in a constructor, the object being constructed is

deemed not to have started its lifetime and no destructor will ever be

called for the object.

So, for example, if new Y throws, x_ will be leaked.

Fix:

class TwoResources {

public:TwoResources() : x_(make_unique<X>()),

y_(make_unique<Y>()) {}

private:

unique_ptr<X> x_;

unique_ptr<Y> y_;

};

Copyright c
2015, 2016

Michael D.
Adams

C++ 829Version: 2016-01-18

Avoid Returning
By

Const Value

What is wrong with the following code?

const std::string getMessage() {

return "Hello";

}

The const return value will interact poorly with move semantics, as the

returned object cannot be used as the source for a move operation (since

the source for a move operation must be modifiable).

Fix:

std::string getMessage() {

return "Hello";

}

Copyright c
2015, 2016

Michael D.
Adams

830C++ Version: 2016-01-18

Normally Avoid Using std::move When Returning By Value

What is wrong with the following code?

std::vector<int> getVector() {

std::vector<int> v;

// calculate v

return std::move(v);

}

Due to the use of std::move, the type of the expression in the return

statement does not match the function return type (i.e.,

std::vector<int> versus std::vector<int>&&).

RVO/NRVO can only be applied if the type of the expression in the return

statement matches the function return type.

So, RVO/NRVO cannot be applied in this case.

If the types would not have matched anyways (e.g., a two-element

std::tuple and a std::pair), std::move would be reasonable to

employ.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 831

Avoid Returning an Rvalue Reference to an Rvalue Reference Parameter

Returning an rvalue reference to an rvalue reference parameter can

potentially lead to very subtle bugs.

Example:

std::string&& join(std::string&& s, const char*return std::move(s.append(", ").append(p));

}

p) {

std::string getMessage()void func() {

const string& r =

{return "Hello";}

join(getMessage(), " World");

// lifetime of temporary returned by getMessage

// not extended to lifetime of r since not

// directly bound to r

// r now refers to destroyed temporary

}

Fix:

std::string join(std::string&& s, const char* p) {

return std::move(s.append(", ").append(p));

}

Returning by rvalue reference should probably be avoided, except in very

special circumstances (such as std::forward and std::move).Copyright c
2015, 2016

Michael D.
Adams

Version: 2016-01-18

832C++

No Explicit Template Arguments to std::make_pair

Never provide explicit template arguments to std::make_pair.

Let x and y be objects of type X and Y, respectively.

What is wrong with the following code?

std::make_pair<X, Y>(x, y)

make_pair declared as:

template <class T1, class T2>pair<V1,

V2> make_pair(T1&& x, T2&& y);

where V1 and V2 are (except in special case) std::decay_t<T1> and

std::decay_t<T2>, respectively

If, for example, X and Y are int, then make_pair has two rvalue

reference parameters which cannot bind to the lvalues x and y.

Use make_pair(x, y) or sometimes pair<X, Y>(x, y).

Copyright c
2015, 2016

Michael D.
Adams

833C++ Version: 2016-01-18

Prefer Use of std::make_shared

when creating std::shared_ptr objects, prefer to use

std::make_shared (as opposed to explicit use of new with shared_ptr)

more efficient

control block and owned object can be allocated together

one memory allocation instead of two; better cache efficiency

better exception safety (avoid resource leaks)

Copyright c
2015, 2016

Michael D.
Adams

834C++ Version: 2016-01-18

Section 4.3

Idioms

Copyright c
2015, 2016

Michael D.
Adams

835C++ Version: 2016-01-18

Proxy
Classes

proxy class provides modified interface to another class

Copyright c
2015, 2016

Michael D.
Adams

836C++ Version: 2016-01-18

Proxy Class Example

#include <iostream >

#include <utility >

class B OOlWe Ctor;

class Proxy

public :

Proxy () = default;

Proxy & operator= (const Proxy &)

operator bool () const;

void operator= (bool b);

private :

friend class B O OlWect or ;

Proxy (const Proxy &) = default;

BOOlWe Ct or * v_;

int i_;

};

20 class BOOl Vector {

21 public :

22 BoolVector (int n) ; n_ (n), d_ (new unsigned char [(n + 7)

23 Std :: fill_n (d_, (n + 7) / 8, 0);

24 }

25 BO OlWe Ctor () { delete [] d_; }

26 int Si Ze () const { return n_; }

27 bool operator [] (int i) const { return getElem (i) ; }

28 Proxy operator [] (int i) { return Proxy (this, i.); }

29 private:

30 friend class Proxy ;

31 bool get Elem (int i) const return (d_[i / 8) > X (i

32 void SetElem (int i, bool b) {

33 (d_[i / 8 j & = (1 << (i & 8))) (b 3 (i ; 8));

34 }

35 int n_;

36 unsigned char * d_;

37 };

38

39 inline void Proxy :: operator= (bool b) {v_-> set Elem (i_,

40 inline Proxy : : operator bool () const

Proxy (BoolVector * v, int i) : v_ (v),

default;

b) ; }

{ return V_-> getElem (i_) ; }

/ 8 |)

L -

{

- E -
-

-

Copyright © 2015, 2016 Michael D. Adams Version: 2016-01-18C++

Proxy Class Example

Std : : C out << Cv [i] ;

}

Std : : C out << * \n' ;

1

2

3 int main () {

4 BOOl Vector V (16);

5 for (int i = 0; i < v. Si Ze () ;

6 v [i] = (i & 1);

7 }

8 for (int i = 0; i < v. Si Ze () ;

9 Std : : C out << V [i] ;

10 }

11 Std : : C out << * \n' ;

12 const BOOlVector & Cv = v ;

13 for (int i = 0; i < CV . Size () ;

14

15

Continued

#include "proxy_class example_1.hpp "

++ i)

16

17

- L| º - E -

Copyright © 2015, 2016 Michael D. Adams Version: 2016-01-18C++

Section 4.4

C Compatibility

Copyright c
2015, 2016

Michael D.
Adams

839C++ Version: 2016-01-18

C Compatibility

Although C++ attempted to maintain compatibility with C where possible,

there are numerous incompatibilities between the languages.

Unfortunately, as C++ and C continue to evolve, the number of

incompatibilities between these languages continue to grow.

In practice, many C programs are valid C++ programs and can therefore

be compiled with a C++ compiler.

Some C programs, however, may require a significant number of changes

to be valid C++.

A few examples of incompatibilities between C++ and C are given in what

follows.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 840

Conflicts with New Keywords

1 #include <stdio.h>

2 #include <unistd.h>

3

4 /* Delete a file. */

5 int delete(const char* filename) { /* note function name */

6 return unlink(filename);

7 }

8

9
int main(int argc, char** argv) {

if (argc >= 2) {

if (delete(argv[1])) {

printf("cannot delete file\n");

return 1;

10

11

12

13

14 }

15 }

16 return 0;

17 }

C++ introduces many new keywords.

Some C programs might use some of these keywords as identifiers (e.g.,

new, delete).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 841

Function Declarations Without Arguments

1 #include <stdio.h>

2

3
int plusOne(); /* no arguments specified */

4

5
int main(int argc, char** argv) {

6
printf("%d\n", plusOne(0));

7 return 0;

8 }

9

10
int plusOne(int i) {

11 return i + 1;

12 }

In C, a function declaration without arguments implies that the arguments

are unspecified.

In C++, a function declaration without arguments implies that the function

takes no arguments.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 842

Implicit Return
Type

1

9

10

11

12 }

#include <stdio.h>

2

3
myfunc() { /* implicit return type */

4 return 3;

5 }

6

7
int main(int argc, char **argv) {

8 int i;

i = myfunc();

printf("%d\n", i);

return 0;

In C, if the return type of a function is not specified, it is treated as int.

In C++, the return type of a function must always be explicitly specified.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 843

More Restrictive Conversions Involving void*

1
int main(int argc,

2 int i;

3
int* ip;

4
void* vp;

5
ip = &i;

6
vp = ip;

7

return 0;

9 }

char** argv) {

ip = vp; /* problematic */

8

C provides an implicit conversion from void* to any pointer type, while

C++ does not.

Copyright c
2015, 2016

Michael D.
Adams

844C++ Version: 2016-01-18

Scoping Rules for Nested Structs

1 struct outer {

2 struct inner {

3 int i;

4 };

5
int j;

6 };

7

8 struct inner a = {1}; /* inner vs. outer::inner */

9

10
int main(int argc, char** argv) {

11 return 0;

12 }

C and C++ both allow nested struct types, but the scoping rules differ.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 845

Part 5

Programming

Copyright c
2015, 2016

Michael D.
Adams

846C++ Version: 2016-01-18

Section 5.1

Good Programming Practices

Copyright c
2015, 2016

Michael D.
Adams

847C++ Version: 2016-01-18

Formatting,
Naming, Documenting

Be consistent with the formatting of the source code (e.g., indentation

strategy, tabs versus spaces, spacing, brackets/parentheses).

Avoid a formatting style that runs against common practices.

Be consistent in the naming conventions used for identifiers (e.g., names

of objects, functions, namespaces, types) and files.

Avoid bizarre naming conventions that run against common practices.

Comment your code. If code is well documented, it should be possible to

quickly ascertain what the code is doing without any prior knowledge of

the code.

Use meaningful names for identifiers (e.g., names of objects, functions,

types, etc.). This improves the readability of code.

Avoid magic literal constants. Define a constant object and give it a

meaningful name.

const int maxTableSize = 100;

std::vector<TableEntry> table(maxTableSize);

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 848

Error
Handling

If a program requires that certain constraints on user input be satisfied in

order to work correctly, do not assume that these constraints will be

satisfied. Instead, always check them.

Always handle errors gracefully.

Provide useful error messages.

Always check return codes. Even if the operation/function theoretically

cannot fail (under the assumption of bug-free code), in practice it may fail

due to a bug.

If an operation is performed that can fail, check the status of the

operation to ensure that it did not fail (even if you think that it should not

fail). For example, check for error conditions on streams.

If a function can fail, always check its return value.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 849

Simplicity

Do
not unnecessarily complicate code. Use the simplest solution that will

meet the needs of the problem at hand.

Do not impose bogus limitations. If a more general case can be handled

without complicating the code and this more general case is likely to be

helpful to handle, then handle this case.

Do not unnecessarily optimize code. Highly optimized code is often much

less readable. Also, highly optimized code is often more difficult to write

correctly (i.e., without bugs). Do not write grossly inefficient code that is

obviously going to cause performance problems, but do not optimize

things beyond avoiding gross inefficiencies that you know will cause

performance problems.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 850

Code
Duplication

Avoid duplication of
code.

If
similar code

is
needed

is more than
place,

put the code in a function. Also, utilize templates to avoid code duplication.

The avoidance of code duplication has many advantages.

1
It simplifies code understanding. (Understand once, instead of n times.)

2
It simplifies testing. (Test once, instead of n times.)

3
It simplifies debugging. (Fix bugs in one place, instead of n places.)

4
It simplifies code maintenance. (Change code in one place, instead of n

places.)

Make good use of the available libraries. Do not reinvent the wheel. If a

library provides code with the needed functionality, use the code in the

library.

Copyright c
2015, 2016

Michael D.
Adams

851C++ Version: 2016-01-18

Miscellany

Avoid multiple returns paths (i.e., multiple points of exit) in functions

when they serve to complicate (rather than simplify) code structure.

Avoid
the

use of global objects. For example,
use

static
data members

instead of global objects. In well designed code, global objects are rarely

needed.

Ensure that the code is const correct.

If an object does not need to change, make it const. This improves the

readability of code. This also helps to ensure const correctness of code.

Avoid bringing many unknown identifiers into scope. For example, avoid

constructs like:

using namespace std;

Only bring identifiers into scope if you need them.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 852

Miscellany

Do not rely on undefined/unspecified/implementation-defined behavior.

Do not rely on any behavior that is not promised by the language. Do not

rely on undocumented features of libraries. That is, do not write code in a

way that it may only work on certain computing platforms or when the

moon is full.

Enable compiler warning messages. Pay attention
to

warning messages

issued by the compiler.

Learn how to use a source-level debugger. There will be times when you

will absolutely need it.

Be careful to avoid using references, pointers, iterators that do not

reference valid data. Always be clear about which operations invalidate

references, pointers, and iterators.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 853

Testing: Preconditions
and

Postconditions

precondition: condition that must be true before function is called

for example, precondition for function that computes square root of x:

x ≥ 0

postcondition: condition that must be true after function is called

for example, postcondition for function that removes entry from table of

size n: new size of table n−1

whenever feasible, check for violations of preconditions and

postconditions for functions

if precondition or postcondition is violated, terminate program immediately

in order to help in localizing bug (e.g., by calling std::abort or

std::terminate)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 854

Testing

The single most important thing when writing code is that it does the job it

was intended to do correctly. That is, there should not be any bugs.

Test your code. If you do not spend as much time testing your code as you

do writing it, you are likely not doing enough testing.

Tests should exercise as much of the code as possible (i.e., provide good

code coverage).

Design and structure your code so that it is easy to test. In other words,

testing should be considered during design.

Your code will have bugs. Design your code so that it will help you to

isolate bugs. Use assertions. Use preconditions and postconditions.

Design your code so that is modular and can be written and tested in

pieces. The first testing of the software should never be testing the entire

software as a whole.

Often in order to adequately test code, one has to write separate

specialized test code.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 855

Code
Examples

subscripting operator for 1-D array class:

template <class T>

const T& Array_1<T>::operator[](int i) const {

// Precondition: index is in allowable range

assert(i >= 0 && i < data_.size());

return data_[i];

}

function taking pointer parameter:

int stringLength(const char* ptr) {

// Precondition: pointer is not null

assert(ptr != 0);// Code to compute and return string length.

// ...

}

function that modifies highly complicated data structure:

void modifyDataStructure(Type& dataStructure) {

// Precondition: data structure is in valid state

assert(isDataStructureValid(dataStructure));

// Complicated code to update data structure.

// ...

// Postcondition: data structure is in valid state

assert(isDataStructureValid(dataStructure));

}

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 856

Section 5.2

Finite-Precision Arithmetic

Copyright c
2015, 2016

Michael D.
Adams

857C++ Version: 2016-01-18

Code
Example

What do each of the following functions output when executed?

double x = 0.1;

double y = 0.3;

double z = 0.4;

if (x + y == {

std::cout << "true\n";} else {

std::cout << "false\n";}

}

void func1() {

z)

void func2() {

double x = 1e50;

double y = -1e50;

double z = 1.0;

if (x + y + z == z + y + x) {

std::cout << "true\n";} else {

std::cout << "false\n";

}

}

void func3() {

for (double x = 0.0; x != 1.0;

std::cout << "hello\n";

}

}

x += 0.1) {

Copyright c
2015, 2016

Michael D.
Adams

C++ 858Version: 2016-01-18

Number Representations
Using Different Radixes

Note: All numbers are base 10, unless explicitly indicated otherwise.

What
is the

representation
of

1
3

in
base 3?

13 =
0.3
= 0.13

What
is the

representation
of

110
in
base

2?

110 =
0.1
= 0.000112

A number may have a representation with a finite number of non-zero

digits in one particular number base but not in another.

Therefore, when a value must be represented with a limited number of

significant digits, the number base matters (i.e., affects the approximation

error).

For example, in base 2, 110 cannot be represented exactly using only a

finite number of significant digits.

0.000112 = 0.09375

0.0001100112 = 0.099609375

...

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 859

Finite-Precision Number Representations

finite-precision number representation only capable of representing small

fixed number of digits

due to limited number of digits, many values cannot be represented

exactly

in cases that desired value cannot be represented exactly, choose nearest

representable value (i.e., round to nearest representable value)

finite-precision representations can suffer from error due to roundoff,

underflow, and overflow

two general classes of finite-precision representations:

1 fixed-point representations

2 floating-point representations

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 860

Fixed-Point
Number

Representations

fixed-point representation: radix point remains fixed at same position in

number

if radix point fixed to right of least significant digit position, integer format

results

Integer Format an−1 an−2 ··· a1 a0.

if radix point fixed to left of most significant digit position, purely fractional

format results

Fractional Format .an−1 an−2 ··· a1 a0

fixed-point representations quite limited in range of values that can be

represented

numbers that vary greatly in magnitude cannot be represented easily

using fixed-point representations

one solution to range problem would be for programmer to maintain

scaling factor for each fixed-point number, but this is clumsy and error

prone

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 861

Floating-Point Number Representations

floating-point representation: radix point is not fixed at particular

position within number; instead radix point allowed to move and scaling

factor automatically maintained to track position of radix point

in general, floating-point value represents number x of form

x = sre,

s is signed integer with fixed number of digits, and called significand

e is signed integer with fixed number of digits, and called exponent

r is integer satisfying r ≥ 2, and called radix

in practice, r typically 2

for fixed r, representation of particular x not unique if no constraints

placed on s and e (e.g., 5·100 = 0.5·101 = 0.05·102)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 862

Floating-Point
Number

Representations (Continued)

to maximize number of significant digits in significand, s and e usually

chosen such that first nonzero digit in significand is to immediate left of

radix point (i.e., 1 ≤
|s|<r);

number
in

this form called normalized;

otherwise called denormalized

other definitions of normalized/denormalized sometimes used but above

one consistent with IEEE 754 standard

Example:

0.75 = 0.112 = 1.12·2−1

1.25 = 1.012 = 1.012 ·20

−0.5 = −0.12 = −1.02·2−1Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 863

IEEE 754
Standard (IEEE

Std.
754-1985)

most widely used standard for (binary) floating-point arithmetic

specifies four floating-point formats: single, double, single extended, and

double extended

single and double formats called basic formats

radix 2

three integer parameters determine values representable in given format:

number p of significand bits (i.e., precision)

maximum exponent Emax

minimum exponent Emin

parameters for four formats are as follows:

Parameter Single Single Double Double

Extended Extended

p 24 ≥ 32 53 ≥ 64

Emax 127 > 1023 1023 ≥ 16383

Emin −126 ≤ −1022 −1022 ≤ −16382

Exponent bias 127 unspecified 1023 unspecified

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 864

IEEE
754

Standard
(Continued)

with each format, numbers of following form can be represented

(−1)s2E(b0.b1b2
···b

p−1

)

where
s∈ {0,1},

E
is

integer satisfying Emin ≤
E≤

Emax, and bi ∈ {0,1}

in addition, can represent four special values: +∞, −∞, signaling NaN,

and quiet NaN

NaNs produced by:

operations with at least one NaN operand

operations yielding indeterminate
forms,

such as 0/0, (±∞)/(±∞),

0·(±∞), (±∞)·0, (+∞)+(−∞), and (−∞)+(∞)

real operations that yield complex results, such as square root of negative

number, logarithm of negative number, inverse sine/cosine of number that

lies
outside [−1,1]

Copyright c
2015, 2016

Michael D.
Adams

865C++ Version: 2016-01-18

IEEE 754
Basic

Formats

always represent number in normalized form whenever possible; in such

cases, b0 = 1 and b0 need not be stored explicitly as part of significand

bit patterns with reserved exponent values (i.e., exponent values that lie

outside the range Emin ≤ E ≤ Emax) used to represent ±0, ±∞,

denormalized numbers, and NaNs

each of (basic) formats consist of three fields:

a sign bit, s

a biased exponent, e = E+ bias

a fraction, f = .b1b2 ···bp−1

only difference between formats is size of biased exponent and fraction

fields

value represented by basic format number related to its sign, exponent,

and fraction field, but relationship is complicated by the presence of zeros,

infinities, and NaNs

“strange” combination of biased and sign-magnitude formats used to

encode floating-point value chosen so that nonnegative floating-point

values ordered in same way as integers, allowing integer comparison to

compare floating-point numbers

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 866

IEEE 754
Basic

Formats (Continued)

single format:

1 8 23

s e f

MSB LSB MSB LSB

double format:

1 11 52

s e f

MSB LSB MSB LSB

summary of encodings:

Case Exponent Fraction Value

Normal Emin ≤ E ≤ Emax — (−1)s2E(1+f)

Denormal E = Emin −1 f = 0 (−1)s2Eminf

Zero E = Emin −1 f = 0 (−1)s0

Infinity E = Emax +1 f = 0 (−1)s∞

NaN E = Emax +1 f = 0 NaN

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 867

IEEE 754 Encoding Examples

How would the number 5.2510 be represented in single format?

5.2510 = 101.012 ·20 = 1.01012 ·22

Therefore, s = 0, e = 210 +12710 = 12910 = 100000012, and

f = 0101000···0, resulting in the word:

0 10000001 01010000000000000000000

s e f

How would the number −9.12510 be represented in double format?

−9.12510 = −1001.0012 ·20 = −1.0010012 ·23

Therefore, s = 1, e = 310 +102310 = 102610 = 100000000102, and

f = 001001000···0, resulting in the word:

1 10000000010 00100100

s e f

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 868

Finite-Precision Arithmetic

Understand the impact of using finite-precision arithmetic.

Do not make invalid assumptions about the set of values that can be

represented by a particular fixed-point or floating-point type.

Integer arithmetic can overflow. Be careful to avoid overflow.

Floating-point arithmetic can overflow and underflow.

Perhaps, more importantly, however, floating-point arithmetic has

roundoff error. If you are not deeply troubled by the presence of roundoff

error, you should be as it can cause major problems in many situations.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 869

References I

1 D. Goldberg. What every computer scientist should know about

floating-point arithmetic.

ACM Computing Surveys, 23(1):5–48, Mar. 1991

2 IEEE Std. 754-1985 — IEEE standard for binary floating-point arithmetic,

1985

3 IEEE Std. 754-2008 — IEEE standard for floating-point arithmetic, 2008

Copyright c
2015, 2016

Michael D.
Adams

870C++ Version: 2016-01-18

Talks I

Sept. 24, 2015.

1 John Farrier, Demystifying Floating Point, CppCon, Bellevue, WA, USA,

Copyright c
2015, 2016

Michael D.
Adams

871C++ Version: 2016-01-18

Section 5.3

Documentation for Software Development

Copyright c
2015, 2016

Michael D.
Adams

872C++ Version: 2016-01-18

Documentation for Software Development

documentation plays essential role in software development process

many benefits to formalizing in writing various aspects of software at

different points in development process

consider two types of documents:

1 software requirements specification

2 software design description

software requirements specification (SRS): describes what software

should do (from external viewpoint)

software design description (SDD): describes how software works

internally

Copyright c
2015, 2016

Michael D.
Adams

873C++ Version: 2016-01-18

Software Requirements Specification (SRS)

establishes agreement between consumer and contractors on what

software is expected to do as well as what it is not expected to do

can be thought of as contract between customer and contractor

functionality: what does software do? (what problem does it solve?)

external interfaces: how does software interact with external agents, such

as humans, hardware, and software (e.g., command-line interface,

graphical user interface, application program interface)

performance: speed, availability, response time, recovery time of various

functions

attributes: considerations regarding reliability, availability, maintainability,

portability, security

design constraints imposed on implementation: implementation language,

resource limits, operating environments

assumptions upon which requirements are based

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 874

SRS
(Continued)

distinguish classes of requirements:

essential: software will be unacceptable unless requirement met

conditional: would enhance software if requirement met, but not

unacceptable if requirement not met

optional: class of functionality that may or may not be worthwhile

should not leave details of software requirements to be determined

only focus on what the software needs to do, not how done (i.e., should

not describe any design or implementation details)

typical use cases

constraints imposed on software:

time constraints

memory constraints

software limitations:

restrictions on input data

allowable ranges for parameters of methods

dependencies on other software (e.g., other programs needed to function)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 875

External Interfaces

external interfaces: how software interacts with external agents, such as

humans, hardware, and software

command line interface (CLI) (for program)

options (e.g., required versus optional, default settings)

standard input, output, error

exit status

graphical user interface (GUI) (for program)

window layout

user interaction (e.g., mouse/keyboard actions)

application program interface (API) (for library)

constants

types, classes/methods

functions

namespaces

format of all data used by software

Copyright c
2015, 2016

Michael D.
Adams

C++ 876Version: 2016-01-18

Benefits
of SRS

establishes basis for agreement between customer and contractors

reduces development effort by thoroughly considering all requirements

before starting design

provides basis for estimating costs and schedules

provides baseline for validation and verification

facilitates transfer of software product to new users or machines

serves as basis for enhancement

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 877

SRS Example: Sorting Program

single program that performs sorting

given records as input, program sorts records and outputs records in

sorted order

record data format (for input and output):

records delimited by single newline character

each record consists of one or more fields, separated by one or more

whitespace characters

restrictions/constraints:

may assume sufficient memory to buffer all records

software must work without any modification to source code on any platform

with C++ compiler compliant with C++11 standard

records read from standard input

sorted records written to standard output

any error/warning messages written to standard error

sorts records using nth field in record as key

can sort in ascending or descending order

sort key may be numeric or string

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 878

SRS
Example: Sorting

Program (Continued)

command line interface:

sort [-r] [-k $n] [-n]

Option Description

-k $n Sort using nth field in record; if not specified, n

defaults to 1.

-n Treat key as real number (instead of string) for

sorting purposes; if not specified, key treated as

string.

-r Sort in descending (instead of ascending) order; if

not specified, defaults to ascending order.

give examples illustrating expected use cases

Copyright c
2015, 2016

Michael D.
Adams

879C++ Version: 2016-01-18

Software Design Description (SDD)

high-level design: overview of entire system, identifying all its components

at some level of abstraction (i.e., overall software architecture)

detailed design (a.k.a. low-level design): full details of system and its

components (e.g., types, functions, APIs, pseudocode, etc.)

describes high-level and detailed design of software

some context regarding functionality provided by software

how design is recursively structured into constituent parts and role of

those parts

types and interfaces (e.g., classes and public members)

data structures used to represent information to be processed

internal interfaces (and external interfaces not described in SRS)

interaction amongst entities

algorithms

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 880

SDD
(Continued)

describe overall structure of software

carefully consider choice of data structures used to represent information

being processed, as choice will almost always have performance

implications

specify any data formats used internally by software

provide pseudocode for key parts of software

state any potentially limiting assumptions made

Copyright c
2015, 2016

Michael D.
Adams

881C++ Version: 2016-01-18

Benefits
of SDD

encourages better planning by forcing design ideas to be more carefully

considered and organized

allows greater scrutiny of design

captures important design decisions, such as rationale for particular

design choices

allows newcomers to development team to become acquainted with

software more easily

provides point of reference to be used throughout project

promotes reuse of code (since well documented code more likely to be

reused)

facilitates better software testing (since certain types of testing benefit

from understanding of software design)

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 882

SDD Example: Sorting Program

Key alias for type that represents sort key (alias for std::string)

Compare functor class for comparing Key objects

Dataset class represents collection of all records

specify all class interfaces (i.e., public members)

Dataset class provides:

constructor that creates dataset by reading all records from input stream

function to output all records in sorted order to output stream

Dataset class to use std::multimap<Key, std::string, Compare>

allows n records
to

be sorted
in
O(nlogn)

time
[n insertions, each

requiring O(logn)
time]

handling n records requires O(n)
memory

only uses C++ standard library

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 883

Requirements/Design Document for Degree
Project

document is combination of SRS and SDD with some added information

about testing strategies

briefly introduce problem being addressed by software

describe each program and library to be developed

identify parts of any external software (e.g., programs or libraries) that will

be used

describe user interface (e.g., CLI, GUI) for each program

fully specify all data formats used

describe overall structure of each program and library

identify all key data structures and algorithms to be used

provide pseudocode for key parts of the software

state any potentially limiting assumptions made by software

indicate how programs and library code will be tested

offer any other information that may be helpful (since above list is not

exhaustive)

provide sufficient detail for other people to understand how software is to

be structured and how it will be implemented
and

tested

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 884

References

1 IEEE Std. 1016-2009 — IEEE standard for information technology —

systems design — software design descriptions, July 2009.

2 IEEE Std. 830-1998 — IEEE recommended practice for software

requirements specifications, Oct. 1998.

Copyright c
2015, 2016

Michael D.
Adams

885C++ Version: 2016-01-18

Part 6

Additional Learning Resources

Copyright c
2015, 2016

Michael D.
Adams

886C++ Version: 2016-01-18

Limits of Knowledge

Know what you do not know.

Ask questions when you are uncertain about something and be sure that

the person whom you ask is knowledgeable enough to give a correct

answer.

Know what information resources can be trusted.

Learn to use reference materials effectively (e.g., documentation on

libraries, standards).

Copyright c
2015, 2016

Michael D.
Adams

887C++ Version: 2016-01-18

C++ References

Some good references on various topics related to the C++ programming

language, C++ standard library, and other C++ libraries (such as Boost)

are listed on the slides that follow.

Any information on C++ (e.g., books, tutorials, videos, seminars) from the

following individuals (who are held in very high regard by the C++

community) is highly recommended:

Bjarne Stroustrup (the creator of C++)

Scott Meyers

Herb Sutter (Convener of ISO C++ standards committee for over 10 years)

Andrei Alexandrescu

Stephan Lavavej

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 888

C++ References I

1 ISO/IEC 14882:2011 — information technology — programming

languages — C++, Sept. 2011.

This is the definitive specification of the C++ language and standard library. This

is an essential reference for any advanced programmer.

2 B. Stroustrup. The C++ Programming Language.

Addison Wesley, 4th edition, 2013.

This is the classic book on the C++ programming language and standard library,

written by the creator of the language. This is one of the best references for first

learning C++. Excellent

3 Standard C++ Foundation web site. http://www.isocpp.org, 2014.

This is the web site of a non-profit organization whose purpose is to support the

C++ software development community and promote the understanding and use

of modern standard C++ on all compilers and platforms. This is an absolutely

outstanding source of information on C++. Excellent

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 889

C++ References II

4 S. Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use

of C++11 and C++14.

O’Reilly Media, Cambridge, MA, USA, 2015.

This book covers a list of 42 topics on how to better utilize the C++ language.

Excellent

5 S. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and

Designs.

Addison Wesley, Menlo Park, California, 1992.

This book covers a list of 50 topics on how to better utilize the C++ language.

Excellent

6 S. Meyers. More Effective C++: 35 New Ways to Improve Your Programs

and Designs.

Addison Wesley, Menlo Park, California, 1996.

This book covers a list of 35 topics on how to better utilize the C++ language. It

builds on Meyers’ earlier “Effective C++” book. Excellent

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 890

C++ References III

7 S. Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the

Standard Template Library.

Addison Wesley, 2001.

This book covers a list of 50 topics on how to better utilize the Standard Template

Library (STL), an essential component of the C++ standard library. Excellent

Copyright c
2015, 2016

Michael D.
Adams

C++ 891Version: 2016-01-18

C++ References
IV

8
N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference.

Addison Wesley, Upper Saddle River, NJ, USA, 2nd edition, 2012.

This is a very comprehensive book on the C++ standard library. This is arguably

the best reference on the standard library (other than the C++ standard). Excellent

9 D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.

Addison Wesley, 2002.

This is a very comprehensive book on template programming in C++. It is

arguably one of the best books on templates in C++. Excellent

10 A. Williams. C++ Concurrency in Action.

Manning Publications, Shelter Island, NY, USA, 2012.

This is a fairly comprehensive book on concurrency and multithreaded

programming in C++. It is arguably the best book available for those who want to

learn how to write multithreaded code using C++. Excellent

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 892

C++ References V

11 H. Sutter. Exceptional C++: 47 Engineering Puzzles, Programming

Problems, and Solutions.

Addison Wesley, 1999.

This book covers topics including (but not limited to): proper resource

management, exception safety, RAII, and good class design. Excellent

12 H. Sutter. More Exceptional C++: 40 New Engineering Puzzles,

Programming Problems,
and

Solutions.

Addison Wesley, 2001.

This book covers topics including (but not limited to): exception safety, effective

object-oriented programming, and correct use of STL. Excellent

13 H. Sutter. Exceptional C++ Style: 40 New Engineering Puzzles,

Programming Problems, and Solutions.

Addison Wesley, 2004.

This book covers topics including (but not limited to): generic programming,

optimization, resource management, and how to write modular code. Excellent

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 893

C++ References VI

14 H. Sutter and A. Alexandrescu. C++ Coding Standards: 101 Rules,

Guidelines, and Best Practices.

Addison Wesley, 2004.

This book presents 101 best practices, idioms, and common pitfalls in C++ in

order to allow the reader to become a more effective C++ programmer. Excellent

Copyright c
2015, 2016

Michael D.
Adams

894C++ Version: 2016-01-18

C++ References VII

15

A. Langer and K. Kreft. Standard C++ IOStreams and Locales.

Addison Wesley, 2000.

This book provides a very detailed look at C++ I/O streams and locales.

Said-To-Be Excellent

16

V. A. Punathambekar. How to interpret complex C/C++ declarations.

http://www.codeproject.com/Articles/7042/

How-to-interpret-complex-C-C-declarations, 2004.

This is a detailed tutorial on how to interpret complex C/C++ type declarations.

This tutorial explains how type declarations are parsed in the language, which is

essential for all programmers to understand clearly. Excellent

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 895

Other C++
References I

1 S. B. Lippman, J. Lajoie, and B. E. Moo. C++ Primer.

Addison Wesley, Upper Saddle River, NJ, USA, 4th edition, 2005.

2 A. Koenig and B. E. Moo. Accelerated C++: Practical Programming by

Example.

Addison Wesley, Upper Saddle River, NJ, USA, 2000.

3 B. Eckel. Thinking in C++—Volume 1: Introduction to Standard C++.

Prentice Hall, 2nd edition, 2000.

4 B. Eckel and C. Allison. Thinking in C++—Volume 2: Practical

Programming.

Prentice Hall, 1st edition, 2003.

5 B. Stroustrup. Programming: Principles and Practice Using C++.

Addison Wesley, Upper Saddle River, NJ, USA, 2009.

An introduction to programming using C++ by the creator of the language.

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 896

Other C++
References

II

6 A. Alexandrescu. Modern C++ Design.

Addison Wesley, Upper Saddle River, NJ, USA, 2001.

7 D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond.

Addison Wesley, Boston, MA, USA, 2004.

8 D. D. Gennaro. Advanced C++ Metaprogramming.

CreateSpace Independent Publishing Platform, 2011.

9 Boost web site. http://www.boost.org, 2014.

The web site for the Boost C++ libraries.

10

B. Karlsson. Beyond the C++ Standard Library: An Introduction to Boost.

Addison Wesley, Upper Saddle River, NJ, USA, 2005.

An introduction to (some parts of) the Boost library.

Copyright c
2015, 2016

Michael D.
Adams

897C++ Version: 2016-01-18

Other C++
References III

11

B. Schaling. The Boost C++ Libraries.

XML Press, 2nd edition, 2014.

An introduction to the Boost library. Online version at http://

theboostcpplibraries.com.

12 M. Kilpelainen. Overload resolution — selecting the function.

Overload, 66:22–25, Apr. 2005.

Available online at http://accu.org/index.php/journals/268.

Copyright c
2015, 2016

Michael D.
Adams

898C++ Version: 2016-01-18

Yet
More

C++ References I

1 Herb Sutter’s Web Site: http://herbsutter.com2

Herb Sutter’s Guru of the Week: http://www.gotw.ca/gotw/

3 Bjarne Stroustrup’s Web Site: http://www.stroustrup.com

4 ISO C++ Working Group web site: http://www.open-std.org/jtc1/sc22/wg21/

5 C++ FAQ: http://www.parashift.com/c++-faq/

6 Newsgroup comp.lang.c++.moderated: https://groups.google.com/forum/#!forum/comp.lang.c++.moderated

7 http://en.cppreference.com8

http://www.cplusplus.com9

Stackoverflow: http://stackoverflow.com

10 Cpp Reddit (C++ discussions, articles, and news): https://www.

reddit.com/r/cpp

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 899

Yet
More

C++ References II

11

Cplusplus Reddit (C++ questions, answers, and discussion): https://

www.reddit.com/r/cplusplus

12

ACCU Overload Journal: http://accu.org/index.php/journals/

c78/

13

The C++ Source: http://www.artima.com/cppsource

Copyright c
2015, 2016

Michael D.
Adams

C++ 900Version: 2016-01-18

Miscellaneous Talks I

1 Scott Schurr. constexpr: Introduction, CppCon, Bellevue, WA, USA, Sept

19–25, 2015.

2 Scott Schurr. constexpr: Applications, CppCon, Bellevue, WA, USA, Sept

19–25, 2015.

Copyright c
2015, 2016

Michael D.
Adams

901C++ Version: 2016-01-18

C++ Programming Competitions

1 Google Code Jam

https://code.google.com/codejam/
2 Topcoder

https://www.topcoder.com/
3 IEEEXtreme 24-Hour Programming Competition

http://www.ieee.org/xtreme

4 ACM International Collegiate Programming Contest (ICPC)

http://icpcnews.com/

5 CodeChef

https://www.codechef.com/

Copyright c
2015, 2016

Michael D.
Adams

C++ 902Version: 2016-01-18

The
Last Word

Use as many information resources as you can to learn as much as you

can about C++.

Read books, articles, and other documents.

Watch videos.

Attend lectures and seminars.

Participate in programming competitions.

But most importantly:

Write code!

Write lots and lots and lots of code!

The only way to truly learn a programming language well is to use it

heavily (i.e., write lots of code using the language).

Copyright c
2015, 2016

Michael D.
Adams

C++ Version: 2016-01-18 903

