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STATIC SINGLE ASSIGNMENT FORM

The	material	in	these	slides	have	been	taken	from	Chapter	19	–	Static	Single-Assignment	Form	–	of	"Modern	Compiler	Implementation	in	Java	–	
Second	Edition",	by	Andrew	Appel	and	Jens	Palsberg.	



Control	Flow	Graphs	Revisited	

•  We	have	seen	how	to	produce	and	visualize	the	control	
flow	graph	of	a	program	using	LLVM:	

$> clang -c -emit-llvm max.c -o max.bc

$> opt -view-cfg max.bc

•  We	have	also	seen	how	to	use	LLVM's	opt	to	analyze	and	
transform	a	program:	

$> opt -mem2reg max.bc -o max.ssa.bc

$> opt -view-cfg max.ssa.bc What	do	you	think	
is	the	difference	
between	max.bc	
and	max.ssa.bc?	



Control	Flow	Graphs	Revisited	

int max(int a, int b) {
  int ans = a;
  if (b > a) {
    ans = b;
  }
  return ans;
}

clang -c -emit-llvm max.c -o max.bc	

opt -mem2reg max.bc -o max.ssa.bc	

So,	again,	what	
is	the	difference	
between	these	
two	CFGs?	



The	Static	Single	Assignment	Form	

•  The	Static	Single	Assignment	Form	is	an	intermediate	
program	representation	that	has	the	following	property:	

Each	variable	in	a	SSA	form	program	
has	only	one	definition	site	

•  There	have	been	many	smart	things	in	the	
science	of	compiler	writing,	but	SSA	form	
is	certainly	one	of	the	smartest.	
•  It	simplifies	many	analyses	and	

optimizations.	

•  Today	it	is	used	in	virtually	any	compiler	of	
notice,	e.g.,	gcc,	LLVM,	Jikes,	Mozilla's	
IonMonkey,	Ocelot,	etc	

Can	you	explain	
this	name:	static	
single	
assignment?	

SSA	form	is	like	
the	Highlander:	
“there	can	be	

only	one”	



The	Importance	of	SSA	Form	

•  The	seminal	paper	that	describes	the	SSA	intermediate	
program	representation	has	over	2800	citations♧.	

•  Almost	every	compiler	text	book	talks	about	SSA	form.	

•  Google	Scholar	returns	over	five	thousand	results	for	the	
query	"Static	Single	Assignment"	

♧:	Data	collected	on	April	of	2019,	about	the	paper	"Efficiently	computing	static	single	assignment	form	and	
the	control	dependence	graph",	published	in	1991	by	Cytron	et	al.	

The	SSA	Seminar,	in	2011,	
celebrated	the	20th	
anniversary	of	the	Static	
Single	Assignment	form	(April	
27-30,	Autrans,	France)	



The	Static	Single	Assignment	Form	

•  This	name	comes	out	of	the	fact	that	each	variable	has	
only	one	definition	site	in	the	program.	

•  In	other	words,	the	entire	program	contains	only	one	
point	where	the	variable	is	assigned	a	value.	

•  Were	we	talking	about	Single	Dynamic	Assignment,	then	
we	would	be	saying	that	during	the	execution	of	the	
program,	the	variable	is	assigned	only	once.	

Variable	i	has	two	static	assignment	sites:	at	L0	and	
at	L4;	thus,	this	program	is	not	in	Static	Single	
Assignment	form.	Variable	s,	also	has	two	static	
definition	sites.	Variable	x,	on	the	other	hand,	has	
only	one	static	definition	site,	at	L2.	Nevertheless,	x	
may	be	assigned	many	times	dynamically,	i.e.,	
during	the	execution	of	the	program.	
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Converting	Straight-Line	Code	into	SSA	Form	

•  We	call	a	program	without	branches	a	piece	of	"straight-
line	code".	

double baskhara(double a, double b, double c) {
  double delta = b * b - 4 * a * c;
  double sqrDelta = sqrt(delta);
  double root = (b + sqrDelta) / 2 * a;
  return root;
}

$> clang -c -emit-llvm straight.c -o straight.bc

$> opt -mem2reg straight.bc -o straight.ssa.bc

$> llvm-dis straight.ssa.bc

define double @baskhara(double %a, double %b, double %c) {
  %1 = fmul double %b, %b
  %2 = fmul double 4.000000e+00, %a
  %3 = fmul double %2, %c
  %4 = fsub double %1, %3
  %5 = call double @sqrt(double %4)
  %6 = fadd double %b, %5
  %7 = fdiv double %6, 2.000000e+00
  %8 = fmul double %7, %a
  ret double %8
}

1)	Is	this	bitcode	
program	in	SSA	
form?	

2)	How	can	we	
convert	a	straight-
line	program	into	
SSA	form?	



Converting	Straight-Line	Code	into	SSA	Form	

•  We	call	a	program	without	
branches	a	piece	of	
"straight-line	code".	

•  Converting	a	straight-line	
program,	e.g.,	a	basic	
block,	into	SSA	is	fairly	
straightforward.	

for each variable a: 
    Count[a] = 0 
    Stack[a] = [0] 
rename_basic_block(B) = 
    for each instruction S in block B: 
        for each use of a variable x in S: 
            i = top(Stack[x]) 
            replace the use of x with xi 

        for each variable a that S defines 
            count[a] = Count[a] + 1 
            i = Count[a] 
            push i onto Stack[a] 
            replace definition of a with ai 

Can	you	convert	
this	program	
into	SSA	form?	



Converting	Straight-Line	Code	into	SSA	Form	

•  We	call	a	program	without	
branches	a	piece	of	
"straight-line	code".	

•  Converting	a	straight-line	
program,	e.g.,	a	basic	
block,	into	SSA	is	fairly	
straightforward.	

for each variable a: 
    Count[a] = 0 
    Stack[a] = [0] 
rename_basic_block(B) = 
    for each instruction S in block B: 
        for each use of a variable x in S: 
            i = top(Stack[x]) 
            replace the use of x with xi 

        for each variable a that S defines 
            count[a] = Count[a] + 1 
            i = Count[a] 
            push i onto Stack[a] 
            replace definition of a with ai 

Notice	that	we	could	do	
without	the	stack.	How?	
But	we	will	need	it	to	
generalize	this	method.	



Phi-Functions	

Having	just	one	static	assignment	site	for	
each	variable	brings	some	challenges,	
once	we	stop	talking	about	straight-line	
programs,	and	start	dealing	with	more	
complex	flow	graphs.	

One	important	question	
is:	once	we	convert	this	
program	to	SSA	form,	
which	definition	of	b	
should	we	use	at	L5?	



Phi-Functions	

The	answer	to	this	question	is:	it	depends!	Indeed,	the	
definition	of	b	that	we	will	use	at	L5	will	depend	on	which	
path	execution	flows.	If	the	execution	flow	reaches	L5	
coming	from	L4,	then	we	must	use	b1.	Otherwise,	execution	
must	reach	L5	coming	from	L2,	in	which	case	we	must	use	b0		



Phi-Functions	

In	order	to	represent	this	kind	of	behavior,	
we	use	a	special	notation:	the	phi-
function.	Phi-functions	have	the	semantics	
of	a	multiplexer,	copying	the	correct	
definition,	depending	on	which	path	they	
are	reached	by	the	execution	flow.	

What	happens	once	we	
have	multiple	phi-
functions	at	the	
beginning	of	a	block?	



Phi-Functions	

A	set	of	N	phi-functions	with	M	arguments	each	at	the	beginning	
of	a	basic	block	represents	M	parallel	copies.	Each	copy	reads	N	
inputs,	and	writes	on	N	outputs.	

How	do	we	
implement	phi-
functions	in	
assembly?	



SSA	Elimination	

Compilers	that	use	the	SSA	form	usually	
contain	a	step,	before	the	generation	of	
actual	assembly	code,	in	which	phi-
functions	are	replaced	by	ordinary	
instructions.	Normally	these	instructions	
are	simple	copies.	

And	where	would	we	
place	the	copy	b2	=	b0?	
Why	is	this	an	
important	question	at	
all?	



L0: a0 = read()
 1: b0 = read()
 x: b2 = b0
 2: if a0 > b0 goto L3

L3: b1 = a0
 5: goto L0

    b2 =ϕ(b0, b1)
L6: ret b2

✗

Critical	Edges	

The	placement	of	the	copy	b2	=	b0	is	not	simple,	because	the	
edge	that	links	L2	to	L5	is	critical.	A	critical	edge	connects	a	block	
with	multiple	successors	to	a	block	with	multiple	predecessors.	

If	we	were	to	put	the	copy	between	labels	L1	and	L2,	then	we	
would	be	creating	a	partial	redundancy.	

1)  have	you	heard	of	
critical	edges	
before?	How	so?	

2)  How	can	we	solve	
this	conundrum?	



Edge	Splitting	

We	can	solve	this	problem	by	doing	critical	edge	
splitting.	This	CFG	transformation	consists	in	
adding	an	empty	basic	block	(empty,	except	by	–	
perhaps	–	a	goto	statement)	between	each	pair	
of	blocks	connected	by	a	critical	edge.	

Ok,	but	let’s	go	
back	into	SSA	
construction:	
where	to	insert	
phi-functions?	



Criteria	for	Inserting	Phi-Functions	

•  There	should	be	a	phi-function	for	
variable	b	at	node	z	of	the	flow	graph	
exactly	when	all	of	the	following	are	true:	
–  There	is	a	block	x	containing	a	definition	

of	b	
–  There	is	a	block	y	(with	y	≠	x)	containing	a	

definition	of	b	
–  There	is	a	nonempty	path	Pxz	of	edges	

from	x	to	z	
–  There	is	a	nonempty	path	Pyz	of	edges	

from	y	to	z	
–  Paths	Pxz	and	Pyz	do	not	have	any	node	in	

common	other	than	z,	and…	
–  The	node	z	does	not	appear	within	both	

Pxz	and	Pyz	prior	to	the	end,	though	it	may	
appear	in	one	or	the	other.	

x:	

z:	

y:	
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Iterative	Creation	of	Phi-Functions	

•  When	we	insert	a	new	phi-function	in	the	program,	we	
are	creating	a	new	definition	of	a	variable.	

•  This	new	definition	may	raise	the	necessity	of	new	phi-
functions	in	the	code.	

•  Thus,	the	path	convergence	criteria	must	be																
used	iteratively,	until	we	reach	a	fixed	point:	

while	there	are	nodes	x,	y,	and	z	satisfying	the	path-
convergence	criteria	and	z	does	not	contain	a	phi-function	
for	variable	a	do:	
				insert	a	=	φ(a,	a,	…,	a)	at	node	z,	with	as	many	
				parameters	as	z	has	predecessors.	

What	is	the	
complexity	of	
this	algorithm?	



Dominance	Property	of	SSA	Form	

•  A	node	d	of	a	rooted,	directed	graph	dominates	another	
node	n	if	every	path	from	the	root	node	to	n	goes	
through	d.	

•  In	Strict♤	SSA	form	programs,	definitions	of	variables	
dominate	their	uses:	
–  If	x	is	the	i-th	argument	of	a	phi-function	in	block	n,	then	
the	definition	of	x	dominates	the	i-th	predecessor	of	n.	

–  If	x	is	used	in	a	non-phi	statement	in	block	n,	then	the	
definition	of	x	dominates	node	n.	

Where	have	we	
heard	of	

dominance	before?	♤:	A	program	is	strict	if	every	variable	
is	initialized	before	it	is	used.	

The	previous	algorithm	is	a	bit	too	expensive.	Let's	see	a	faster	
one.	But,	to	do	it,	we	will	need	the	notion	of	dominance	frontier.	



Dominance	Property	of	SSA	Form	

•  In	Strict	SSA	form	programs,	
definitions	of	variables	
dominate	their	uses:	
–  If	x	is	the	i-th	argument	of	a	
phi-function	in	block	n,	then	
the	definition	of	x	dominates	
the	i-th	predecessor	of	n.	

–  If	x	is	used	in	a	non-phi	
statement	in	block	n,	then	
the	definition	of	x	dominates	
node	n.	

How	does	this	
observation	helps	us	
to	build	SSA	form?	



Dominance	Property	of	SSA	Form	
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For	one,	we	can	distribute	phi-functions	here	and	there,	and	then	we	only	
have	to	worry	about	one	thing:	we	must	ensure	that	every	use	of	a	variable	v	
has	the	same	name	as	the	instance	of	v	that	dominates	that	use.	



The	Dominance	Frontier	

•  There	is	an	algorithm	more	efficient	than	the	iterative	
application	of	the	path-convergence	criteria,	which	is	
almost	linear	on	the	size	of	the	program.	
– This	algorithm	relies	on	the	notion	of	dominance	frontier	

•  A	node	x	strictly	dominates	w	if	x	dominates	w	and	x	≠	w.	

•  The	dominance	frontier	of	
a	node	x	is	the	set	of	all	
nodes	w	such	that	x	
dominates	a	predecessor	
of	w,	but	does	not	strictly	
dominate	w.	

What	are	the	
nodes	that	"e"	
dominates?	
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What	are	the	nodes	
in	the	dominance	
frontier	of	e?	



The	Dominance	Frontier	

•  There	is	an	algorithm	more	efficient	than	the	iterative	
application	of	the	path-convergence	criteria,	which	is	
almost	linear	time	on	the	size	of	the	program.	
– This	algorithm	relies	on	the	notion	of	dominance	frontier	

•  A	node	x	strictly	dominates	w	if	x	dominates	w	and	x	≠	w.	

•  The	dominance	frontier	of	
a	node	x	is	the	set	of	all	
nodes	w	such	that	x	
dominates	a	predecessor	
of	w,	but	does	not	strictly	
dominate	w.	

Why	is	e	included	
in	its	dominance	

frontier?	



The	Dominance	Frontier	Criterion	

•  Dominance-Frontier	Criterion:	Whenever	node	x	
contains	a	definition	of	some	variable	a,	then	any	node	z	
in	the	dominance	frontier	of	x	needs	a	phi-function	for	a.	

•  Iterated	dominance	frontier:	since	a	phi-function	itself	is	
a	kind	of	definition,	we	must	iterate	the	dominance-
frontier	criterion	until	there	are	no	nodes	that	need	phi-
functions.	

Theorem:	the	iterated	dominance	frontier	criterion	and	
the	iterated	path-convergence	criterion	specify	exactly	
the	same	set	of	nodes	at	which	to	put	phi-functions.		



a

e

f g

h

l

i

j

k

b

c

d

x = •

The	Dominance	Frontier	Criterion	

•  Dominance-Frontier	Criterion:	Whenever	node	x	contains	a	
definition	of	some	variable	a,	then	any	node	z	in	the	dominance	
frontier	of	x	needs	a	phi-function	for	a.	

•  Iterated	dominance	frontier:	since	a	phi-function	itself	is	a	kind	of	
definition,	we	must	iterate	the	dominance-frontier	criterion	until	
there	are	no	nodes	that	need	phi-functions.	

Where	should	we	
place	phi-functions	
due	to	the	definition	

of	x	at	block	f?	
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The	Dominance	Frontier	Criterion	

Is	there	any	other	
place	that	should	

receive	phi-
functions?	



The	Dominance	Frontier	Criterion	
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Computing	the	Dominance	Frontier	

We	compute	the	dominance	frontier	of	the	nodes	of	a	graph	by	
iterating	the	following	equations:	

DF[n]	=	DFlocal[n]	∪	{	DFup[c]	|	c	∈	children[n]	}	

Where:	
•  DFlocal[n]:	the	successors	of	n	that	are	not	strictly	dominated	

by	n	
•  DFup[c]:	nodes	in	the	dominance	frontier	of	c	that	are	not	

strictly	dominated	by	n.	
•  children[n]:	the	set	of	children	of	node	n	in	the	dominator	

tree	

1)	It	should	be	clear	
why	we	need	
DFlocal[n],	right?	

2)	But,	why	do	we	
have	this	second	

part	of	the	
equation?	



Computing	the	Dominance	Frontier	

We	compute	the	dominance	
frontier	of	the	nodes	of	a	graph	by	
iterating	the	following	equations:	

DF[n]	=	DFlocal[n]	∪	{	DFup[c]	|	c	∈	
children[n]	}	

Where:	
•  DFlocal[n]:	the	successors	of	n	

that	are	not	strictly	dominated	
by	n	

•  DFup[c]:	nodes	in	the	dominance	
frontier	of	c	that	are	not	strictly	
dominated	by	n.	

•  children[c]:	the	set	of	children	of	
node	c	in	the	dominator	tree	

computeDF[n]: 
S = {} 
for each node y in succ[n] 
    if idom(y) ≠ n 
        S = S ∪ {y} 
for each child c of n in the dom-tree 
    computeDF[c] 
    for each w ∈ DF[c] 
        if n does not dom w, or n = w 
            S = S ∪ {w} 
DF[n] = S 

The	algorithm	below	computes	the	
dominance	frontier	of	every	node	in	
the	CFG.	It	must	be	called	from	the	
root	node:	



Inserting	Phi-Functions	

place-phi-functions: 
  for each node n: 
      for each variable a ∈ Aorig[n]: 
          defsites[a] = defsites[a] ∪ [n] 
  for each variable a: 
      W = defsites[a] 
      while W ≠ empty list 
          remove some node n from W 
          for each y in DF[n]: 
              if a ∉ Aphi[y] 
                  insert-phi(y, a) 
                  Aphi[y] = Aphi[y] ∪ {a} 
                  if a ∉ Aorig[y] 
                      W = W ∪ {y}  

insert-phi(y, a): 
  insert the statement a = ϕ(a, a, …, a) 
  at the top of block y, where the 
  phi-function has as many arguments 
  as y has predecessors 

Where:	
•  Aorig[n]:	the	set	of	variables	defined	

at	node	"n"	
•  Aphi[y]:	the	set	of	variables	that	

have	phi-functions	at	node	"y"	

Notice	that	W	can	grow,	
due	to	this	union.	How	
do	we	know	that	this	
algorithm	terminates?	



Renaming	Variables	

•  We	already	have	a	
procedure	that	renames	
variables	in	straight-line	
segments	of	code	

•  We	must	now	extend	this	
procedure	to	handle	
general	control	flow	
graphs.	

for each variable a: 
    Count[a] = 0 
    Stack[a] = [0] 
rename-basic-block(B): 
    for each instruction S in block B: 
        for each use of a variable x in S: 
            i = top(Stack[x]) 
            replace the use of x with xi 

        for each variable a that S defines 
            count[a] = Count[a] + 1 
            i = Count[a] 
            push i onto Stack[a] 
            replace definition of a with ai 

How	should	we	
extend	this	

algorithm	to	handle	
general	CFGs?	



Renaming	Variables	

rename(n): 
  rename-basic-block(n) 
  for each successor Y of n, where n is the 
  j-th predecessor of Y: 
      for each phi-function f in Y, where the 
      operand of f is ‘a’ 
          i = top(Stack[a]) 
          replace j-th operand with ai 

  for each child X of n: 
      rename(X) 
  for each instruction S ∈ n: 
      for each variable v that S defines: 
          pop Stack[v] 

Child	is	the	successor	
of	n	in	the	dominator	
tree.	Why	we	cannot	
use	the	successors	of	

n	in	the	CFG?	

Does	this	algorithm	
ensure	that	the	
definition	of	a	

variable	dominates	
all	its	uses?	



Putting	it	All	Together	

•  Lets	convert	the	following	program	to	SSA	form:	

i = 1 
j = 1 
k = 0 
while k < 100 
    if j < 20 
        j = i 
        k = k + 1 
    else 
       j = k 
        k = k + 2 
return j 

What	is	the	
dominator	tree	
of	this	CFG?	



Putting	it	All	Together	

The	Dominator	Tree:	

Can	you	compute	
the	dominance	
frontier	of	each	

node?	



Computing	the	Dominance	Frontier	

The	dominance	frontier	of	
each	node	is	listed	below:	

L0:	{}		

L3:		{L3}		

L4:	{L3}		

L5:	{L9}		

L7:	{L9}		

L9:	{L3}		

L10:	{}		

Can	you	insert	phi-
functions	in	the	CFG	on	
the	left,	given	these	
dominance	frontiers?	



Inserting	Phi-Functions	

Which	succession	of	
events	has	forced	us	to	

add	phi	functions	onto	L3?	



Iterated	Dominance	Frontier	

•  Node	L5	does	not	dominate	L9,	although	L9	is	a	successor	of	L5.	
Therefore,	L9	is	in	the	dominance	frontier	of	L5.	L9	should	have	
a	phi-function	for	every	variable	defined	inside	L5.	

•  We	repeat	the	process	for	L9,	
after	all,	we	are	considering	
the	iterated	dominance	
frontier.	

•  L3	is	in	the	dominance	
frontier	of	L9,	and	should	also	
have	a	phi-function	for	every	
variable	defined	in	L5.	Notice	
that	these	variables	are	now	
redefined	at	L9,	due	to	the	
phi-functions.	



The	Arity	of	Phi-Functions	

1)  Could	we	have	a	phi-
function	in	a	node	that	has	
only	one	predecessor?	

2)  Could	we	have	a	phi-
function	with	more	than	
two	arguments?	

3)  Can	you	rename	the	
variables	in	this	program?	



After	Variable	Renaming	



Pruning	SSA	Form	

•  The	algorithm	that	we	just	described	computes	what	is	
called	Minimal	SSA	Form.	

•  This	name	may	be	a	bit	
misleading:	it	is	minimal	
according	to	the	definition	
of	SSA,	but	it	may	create	
dead	variables.	

Where	are	we	going	to	
have	phi-functions	for	

variable	i	in	this	program?	



Pruning	SSA	Form	

•  The	algorithm	that	we	just	described	computes	what	is	
called	Minimal	SSA	Form.	

How	could	we	eliminate	
useless	phi-functions	like	
the	one	in	this	example?	

We	have	a	phi-function	for	i	at	
L1,	because	this	block	is	in	the	
dominance	frontier	of	L2,	a	
block	where	i	is	defined.	This	
phi	function	exists	even	though	
it	is	not	useful	at	all.	



Pruned	SSA	Form	

•  We	can	add	a	liveness	check	to	the	algorithm	that	inserts	
phi-functions,	in	such	a	way	that	we	only	add	a	phi-
function	i	=	ϕ(i,	…,	i),	at	a	program	point	p	if	i	is	alive	at	p.	

In	our	example,	i	is	only	alive	at	
the	spots	painted	in	red.	Thus,	
there	is	no	need	to	insert	a	phi-
function	at	L1,	given	that	i	is	not	
alive	there.	
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Sparse	Analyses	

•  The	Static	Single	Assignment	form	"sparsifies"	many	
dataflow	analyses.	

•  A	sparse	analysis	associates	information	with	the	variable	
itself,	instead	of	associating	information	with	pairs	
formed	by	variables	and	program	points.	

These	analyses	require	
an	essential	property	
to	work	correctly.	
What	property?	



Sparse	Analyses	

•  The	Static	Single	Assignment	form	"sparsifies"	many	
dataflow	analyses.	

•  A	sparse	analysis	associates	information	with	the	variable	
itself,	instead	of	associating	information	with	pairs	
formed	by	variables	and	program	points.	

•  These	analyses	only	work	correctly	if	the	information	
associated	with	a	variable	is	invariant	along	the	entire	
live	range	of	that	variable.	Examples	of	information	
include:	
– The	variable	is	a	constant	
– The	variable	is	used	somewhere	
– etc	



Dead	Code	Elimination	

•  Dead	code	elimination	is	a	code	optimization	that	
removes	from	the	program	instructions	whose	
definitions	have	no	uses.	

•  This	optimization	has	a	fairly	simple	implementation	for	
SSA	form	programs:	

How	can	we	
implement	dead-code	
elimination	in	SSA-
form	programs?	

Dead 
Variables




Dead	Code	Elimination	

•  Dead	code	elimination	is	a	code	optimization	that	
removes	from	the	program	instructions	whose	
definitions	have	no	uses.	

•  This	optimization	has	a	fairly	simple	implementation	for	
SSA	form	programs:	

while	there	is	some	variable	v	with	no	uses	and	the	
statement	that	defines	v	has	no	other	side	effects,	
delete	the	statement	that	defines	v	from	the	program.	

What	is	the	
asymptotic	

complexity	of	
this	algorithm?	



Dead	Code	Elimination	

•  We	associate	a	counter	with	each	variable.	
•  We	traverse	the	program,	and	increment	this	counter	

each	time	the	variable	is	used.	
•  Then	we	proceed	to	iterative	mode:	

while there exists v, such that counter[v] = 0 
    remove the instruction that defined v, e.g., "v = E" 
    for each variable x used in E 
        decrement counter[x] 

Can	you	think	about	
data-structures	that	
help	you	to	
implement	this	
algorithm	efficiently?	



Sparse	Constant	Propagation	

•  Have	you	seen	constant	propagation	before?	
•  In	a	classic	try	at	this	optimization,	we	would	associate	

each	variable	with	an	element	in	the	constant	
propagation	lattice	at	each	program	point.	

•  The	SSA	form	lets	us	simplify	
and	improve	this	algorithm	
substantially.	

How	does	the	
SSA	form	

improve	CP?	



Sparse	Constant	Propagation	

•  The	only	event	that	determines	if	a	
variable	is	constant	or	not	is	its	
assignment.	

•  In	SSA	form	programs,	the	
assignment	site	is	unique	for	each	
variable.	

•  And	the	information	associated	with	
a	variable	–	that	the	variable	is	
constant	or	not	–	does	not	change	
along	the	live	range	of	that	variable.	

How	does	this	
example	look	

like	in	SSA	form?	



Sparse	Constant	Propagation	

•  The	only	event	that	determines	if	a	
variable	is	constant	or	not	is	its	
assignment.	

•  In	SSA	form	programs,	the	
assignment	site	is	unique	for	each	
variable.	

•  And	the	information	associated	with	
a	variable	–	that	the	variable	is	
constant	or	not	–	does	not	change	
along	the	live	range	of	that	variable.	

Can	you	come	up	with	
a	constraint	system	to	

solve	constant	
propagation?	



Sparse	Constant	Propagation	

We	associate	each	program	
variable	v	with	an	abstract	state	
⟦v⟧.	This	abstract	state	is	an	
element	in	the	lattice	of	constant	
propagation.	

The	rules	on	the	right	define	an	
abstract	interpretation	for	each	
relevant	instruction	in	the	target	
program.	

We	keep	interpreting	these	
instructions	abstractly,	until	the	
abstract	state	of	each	program	
variable	stops	changing.	



Sparse	Constant	Propagation	

1)	Can	you	imagine	
the	meaning	of	the	
meet	operator	∧?	

2)	Why	don't	we	have	
to	test	if	⟦v'⟧	is	UNDEF	

in	the	addition?	

3)	What	is	the	time	
complexity	to	solve	

this	problem?	

4)	What	is	the	space	
complexity	to	solve	

this	problem?	



Solution	Guided	by	the	Dominator	Tree	

•  The	Static	Single	Assignment	
gives	us	a	very	efficient	way	
to	solve	these	constraints:	
we	can	interpret	them	in	the	
order	defined	by	the	
dominator	tree.	
–  If	we	follow	this	ordering,	
then	we	are	guaranteed	
that	upon	finding	
statements	other	than	phi-
functions,	the	parameters	of	
these	statements	will	have	
been	assigned	an	abstract	
state.	

What	is	going	
to	be	the	

abstract	state	
of	a0?	

Why	and	
when	is	this	
statement	
true?	



Solution	Guided	by	the	Dominator	Tree	

•  We	evaluate	each	instruction	
according	to	their	abstract	
interpretation.	

What	is	going	
to	be	the	

abstract	state	
of	c0?	



Solution	Guided	by	the	Dominator	Tree	

•  Therefore,	our	abstract	
interpretation	system	must	
have	as	many	entries	as	
there	are	relevant	
statements	in	the	
programming	language	used	
to	write	the	program	that	we	
are	analyzing.	

What	is	going	
to	be	the	

abstract	state	
of	a1	and	b0?	



Solution	Guided	by	the	Dominator	Tree	

•  Phi-Functions	are	just	a	bit	
trickier:	once	we	find	them,	
we	may	not	have	seen	all	
their	parameters,	even	if	we	
go	through	the	dominance	
tree.	
– This	is	only	true	for	phi-
functions.	

•  But,	if	we	have	not	seen	the	
argument	before,	then	its	
value	is	UNDEF,	and	UNDEF	
∧	a	=	a	for	any	abstract	state	
a.	

What	is	going	
to	be	the	

abstract	state	
of	a2?	

Why?	



Solution	Guided	by	the	Dominator	Tree	

•  Notice	that	even	though	we	
may	have	many	different	
instructions	in	our	intermediate	
language,	the	abstract	
semantics	of	many	of	them	
may	be	the	same.	

•  As	an	example,	multiplication,	
addition,	subtraction,	and	most	
of	the	binary	operations	have	
similar	abstract	semantics.	

Are	we	done?	



Solution	Guided	by	the	Dominator	Tree	

•  We	may	have	to	iterate	the	
propagation	of	information.	

•  Changes	will	happen	initially	
at	phi-functions,	because	it	is	
possible	that	not	all	their	
arguments	had	been	
initialized	when	we	first	
found	them.	

What's	the	
next	move?	

a
2
 = a

1
 + 1

x
0
 = input

a
0
 = 1

a
1
 = !(a

0
, a

2
)

a
1
 < c

0

output b
0

c
0
 = a

0
 + 10

b
0
 = x

0
 * a

1

[x
0
] = NAC

[a
0
] = 1

[c
0
] = 11

[b
0
] = NAC

[a
2
] = 2

[a
1
] = NAC



Solution	Guided	by	the	Dominator	Tree	

And	again:	
are	we	done?	

•  The	propagation	of	abstract	
states	can	be	implemented	
very	efficiently:	we	only	need	
to	propagate	information	from	
a	variable	v	to	the	variables	u	
defined	by	instructions	that	use	
v.	

•  In	this	example,	we	only	need	
to	propagate	the	new	abstract	
state	of	a1	to	a2,	as	this	variable	
is	defined	in	an	instruction	that	
uses	a1.		

Again:	what	is	the	
complexity	of	this	

algorithm?	 a
2
 = a

1
 + 1

x
0
 = input

a
0
 = 1

a
1
 = !(a

0
, a

2
)

a
1
 < c

0

output b
0

c
0
 = a

0
 + 10

b
0
 = x

0
 * a

1

[x
0
] = NAC

[a
0
] = 1

[c
0
] = 11

[b
0
] = NAC

[a
2
] = NAC

[a
1
] = NAC



bool ConstantPropagation::runOnFunction(Function &F) {
  // Initialize the worklist to all of the instructions ready to process...
  std::set<Instruction*> WorkList;
  for(inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) {
      WorkList.insert(&*i);
  }
  bool Changed = false;

  while (!WorkList.empty()) {
    Instruction *I = *WorkList.begin();
    WorkList.erase(WorkList.begin());  // Get an element from the worklist
    if (!I->use_empty())               // Don't muck with dead instructions
      if (Constant *C = ConstantFoldInstruction(I)) {
        // Add all of the users of this instruction to the worklist, they
        //  might be constant propagatable now...
        for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
             UI != UE; ++UI)
          WorkList.insert(cast<Instruction>(*UI));
        // Replace all of the uses of a variable with uses of the constant.
        I->replaceAllUsesWith(C);
        // Remove the dead instruction.
        WorkList.erase(I);
        I->eraseFromParent();
        // We made a change to the function...
        Changed = true;
        ++NumInstKilled;
      }
  }
  return Changed;
}

Constant		Propagation		in		LLVM
♧
	

♧:This	code	has	been	taken	from	llvm/lib/Transforms/Scalar/ConstantProp.cpp

2)	Can	you	see	a	"graph"	
in	this	implementation	of	
the	constant	propagation	

algorithm?	
1)	Where	is	the	

abstract	
interpretation	
implemented?	



Liveness	Analysis	in	SSA	Form	Programs	

•  The	problem	of	determining	the	program	points	along	
which	a	variable	is	alive	has	a	simple	solution	for	SSA	
form	programs.	

For each statement S in the program: 
    IN[S] = OUT[S] = {} 

For each variable v in the program: 
    For each statement S that uses v: 
        live(S, v) 

live(S, v): 
    IN[S] = IN[S] ∪ {v} 
    For each P in pred(S): 
          OUT[P] = OUT[P] ∪ {v} 
          if P does not define v 
              live(P, v) 

Can	you	point	
where	i2	is	alive	
in	this	program?	

    i1 = ϕ(i0, i4)
L1: if i1 > 10 goto L7

L2: i2 = i1 + 1
 3: if i2 < 20 goto L5

L0: i0 = 1

L4: i3 = i2 + 2

L7: ret i1

L5: goto L6

    i4 = ϕ(i3, i2)
L6: goto L1



Liveness	Analysis	in	SSA	Form	Programs	

The	points	where	i2	is	alive	
have	been	marked	with	red	
rectangles.	

Tricky	question:	
is	i2	alive	

somewhere	
within	block	L6?	

    i1 = ϕ(i0, i4)
L1: if i1 > 10 goto L7

L2: i2 = i1 + 1
 3: if i2 < 20 goto L5

L0: i0 = 1

L4: i3 = i2 + 2

L7: ret i1

L5: goto L6

    i4 = ϕ(i3, i2)
L6: goto L1



Liveness	Analysis	in	SSA	Form	Programs	

The	answer	for	the	
tricky	question	is	NO.	
Uses	of	variables	in	phi-
functions	are	
considered	in	a	
different	way.	The	
variable	is	effectively	
used	in	the	OUT	set	of	
the	predecessor	block	
where	its	definition	
comes	from.	In	other	
words,	i2	is	alive	at	
OUT[L5],	but	is	not	alive	
at	IN[L6].	

Could	i2	and	i3	be	
allocated	into	
the	same	

memory	space?	

    i1 = ϕ(i0, i4)
L1: if i1 > 10 goto L7

L2: i2 = i1 + 1
 3: if i2 < 20 goto L5

L0: i0 = 1

L4: i3 = i2 + 2

L7: ret i1

L5: goto L6

    i4 = ϕ(i3, i2)
L6: goto L1



Liveness	Analysis	in	SSA	Form	Programs	

Why	can	we	solve	liveness	
analysis	for	SSA	form	

programs	without	having	
to	iterate	through	a	fixed	

point	algorithm?	

♧:	Notice	that	phi-functions	should	be	handled	in	a	different	way.	Do	you	know	why	and	how?	

For each statement S in the program: 
    IN[S] = OUT[S] = {} 

For each variable v in the program: 
    For each statement S that uses v: 
        live(S, v) 

live(S, v): 
    IN[S] = IN[S] ∪ {v} 
    For each P in pred(S): 
          OUT[P] = OUT[P] ∪ {v} 
          if P does not define v 
              live(P, v) 



Liveness	Analysis	in	SSA	Form	Programs	

• = x • = x

x = •
Our	algorithm	works	due	to	the	key	
property	of	SSA	form	programs:	every	
use	of	a	variable	v	is	dominated	by	the	
definition	of	v.	Thus,	we	can	traverse	the	
CFG	of	the	program,	starting	from	the	
uses	of	a	variable,	until	we	stop	at	its	
definition.	We	are	certain	to	stop,	
because	of	the	key	property.	Otherwise,	
the	variable	is	used	without	being	
defined.	In	this	case,	we	will	reach	the	
root	node	of	the	CFG,	and	we	assume	
that	the	variable	is	alive	at	the	input	of	
the	program.	



A	Bit	of	History	

•  The	Static	Single	Assignment	form	was	introduced	by	Ron	
Cytron,	in	1989	

•  Compilers	usually	find	dominators	via	Lengauer/Tarjan's	
algorithm.	
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common	is	the	pruned	SSA	form,	due	to	Briggs	et	al.	
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