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Intermediate Code & Local Optimizations

Lecture 14

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
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Lecture Outline

• Intermediate code

• Local optimizations

• Next time: global optimizations
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Code Generation Summary

• We have discussed
– Runtime organization
– Simple stack machine code generation
– Improvements to stack machine code generation

• Our compiler maps AST to assembly language
– And does not perform optimizations
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Optimization

• Optimization is our last compiler phase

• Most complexity in modern compilers is in the 
optimizer
– Also by far the largest phase

• First, we need to discuss intermediate 
languages
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Why Intermediate Languages?

• When should we perform optimizations?
– On AST

• Pro: Machine independent
• Con: Too high level

– On assembly language
• Pro: Exposes optimization opportunities
• Con: Machine dependent
• Con: Must reimplement optimizations when retargetting

– On an intermediate language
• Pro: Machine independent
• Pro: Exposes optimization opportunities 
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Intermediate Languages

• Intermediate language = high-level assembly 
– Uses register names, but has an unlimited number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• E.g., push translates to several assembly instructions
• Most opcodes correspond directly to assembly opcodes
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Three-Address Intermediate Code

• Each instruction is of the form
x := y op z
x := op y

– y and z are registers or constants
– Common form of intermediate code

• The expression x + y * z is translated
t1 := y * z
t2 := x + t1

– Each subexpression has a “name”
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Generating Intermediate Code

• Similar to assembly code generation

• But use any number of IL registers to hold 
intermediate results
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Generating Intermediate Code (Cont.)

• igen(e, t) function generates code to compute 
the value of e in register t

• Example:
igen(e1 + e2, t) = 

igen(e1, t1) (t1 is a fresh register)
igen(e2, t2) (t2 is a fresh register)
t := t1 + t2

• Unlimited number of registers
Þ simple code generation
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Intermediate Code Notes

• You should be able to use intermediate code
– At the level discussed in lecture

• You are not expected to know how to generate 
intermediate code
– Because we won’t discuss it
– But really just a variation on code generation . . .
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An Intermediate Language

P ® S P | e
S ® id := id op id

| id := op id
| id := id
| push id
| id := pop
| if id relop id goto L
| L:
| jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *
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Definition. Basic Blocks

• A basic block is a maximal sequence of 
instructions with: 
– no labels (except at the first instruction), and 
– no jumps (except in the last instruction)

• Idea: 
– Cannot jump into a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– A basic block is a single-entry, single-exit, 

straight-line code segment
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Basic Block Example

• Consider the basic block
1. L: 
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L’

• (3) executes only after (2) 
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?
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Definition. Control-Flow Graphs

• A control-flow graph is a directed graph with
– Basic blocks as nodes
– An edge from block A to block B if the execution 

can pass from the last instruction in A to the first 
instruction in B

• E.g., the last instruction in A is jump LB

• E.g., execution can fall-through from block A to block B
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Example of Control-Flow Graphs

• The body of a method (or 
procedure) can be 
represented as a control-
flow graph

• There is one initial node

• All “return” nodes are 
terminal

x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 10 goto L
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Optimization Overview

• Optimization seeks to improve a program’s 
resource utilization
– Execution time (most often)
– Code size
– Network messages sent, etc.

• Optimization should not alter what the 
program computes
– The answer must still be the same 
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A Classification of Optimizations

• For languages like C and Cool there are three 
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation
2. Global optimizations

• Apply to a control-flow graph (method body) in isolation
3. Inter-procedural optimizations

• Apply across method boundaries

• Most compilers do (1), many do (2), few do (3)
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Cost of Optimizations

• In practice, a conscious decision is made not 
to implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in compilation time
– Some optimizations have low benefit
– Many fancy optimizations are all three!

• Goal: Maximum benefit for minimum cost
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Local Optimizations

• The simplest form of optimizations

• No need to analyze the whole procedure body
– Just the basic block in question

• Example: algebraic simplification
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Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
x := x * 0 Þ x := 0
y := y ** 2 Þ y := y * y
x := x * 8 Þ x := x << 3
x := x * 15 Þ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)
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Constant Folding

• Operations on constants can be computed at 
compile time
– If there is a statement x := y op z
– And y and z are constants
– Then y op z can be computed at compile time

• Example: x := 2 + 2 Þ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?
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Flow of Control Optimizations

• Eliminate unreachable basic blocks:
– Code that is unreachable from the initial block

• E.g., basic blocks that are not the target of any jump or 
“fall through” from a conditional

• Why would such basic blocks occur?

• Removing unreachable code makes the 
program smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)
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Single Assignment Form

• Some optimizations are simplified if each register 
occurs only once on the left-hand side of an 
assignment

• Rewrite intermediate code in single assignment form
x := z + y                       b := z + y
a := x               Þ a := b
x := 2 * x                       x := 2 * b

(b is a fresh register)
– More complicated in general, due to loops
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Common Subexpression Elimination

• If
– Basic block is in single assignment form
– A definition x := is the first use of x in a block

• Then
– When two assignments have the same rhs, they 

compute the same value
• Example:

x := y + z                              x := y + z
…                             Þ …
w := y + z                             w := x
(the values of x, y, and z do not change in the … code)
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Copy Propagation

• If w := x appears in a block, replace subsequent uses 
of w with uses of x
– Assumes single assignment form

• Example:
b := z + y                           b := z + y
a := b                   Þ a := b
x := 2 * a                           x := 2 * b

• Only useful for enabling other optimizations
– Constant folding
– Dead code elimination
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Copy Propagation and Constant Folding

• Example:
a := 5                                a := 5
x := 2 * a         Þ x := 10
y := x + 6                           y := 16
t := x * y                           t := 160
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Copy Propagation and Dead Code Elimination

If 
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then 
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example:  (a is not used anywhere else)
b := z + y             b := z + y                  b := z + y
a := b          Þ a := b              Þ x := 2 * b
x := 2 * a            x := 2 * b



28

Applying Local Optimizations

• Each local optimization does little by itself

• Typically optimizations interact
– Performing one optimization enables another

• Optimizing compilers repeat optimizations 
until no improvement is possible
– The optimizer can also be stopped at any point to 

limit compilation time
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An Example

• Initial code:
a := x ** 2 
b := 3
c := x
d := c * c
e := b * 2 
f := a + d
g := e * f
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An Example

• Algebraic optimization:
a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
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An Example

• Algebraic optimization:
a := x * x
b := 3
c := x
d := c * c
e := b << 1
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := c * c
e := b << 1 
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1 
f := a + d
g := e * f
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An Example

• Constant folding:
a := x * x 
b := 3
c := x
d := x * x
e := 3 << 1
f := a + d
g := e * f
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An Example

• Constant folding:
a := x * x 
b := 3
c := x
d := x * x
e := 6
f := a + d
g := e * f
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An Example

• Common subexpression elimination:
a := x * x
b := 3
c := x
d := x * x
e := 6 
f := a + d
g := e * f
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An Example

• Common subexpression elimination:
a := x * x
b := 3
c := x
d := a
e := 6 
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + d
g := e * f
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An Example

• Copy propagation:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f
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An Example

• Dead code elimination:
a := x * x 
b := 3
c := x
d := a
e := 6
f := a + a
g := 6 * f
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An Example

• Dead code elimination:
a := x * x 

f := a + a
g := 6 * f

• This is the final form
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Peephole Optimizations on Assembly Code

• These optimizations work on intermediate 
code
– Target independent
– But they can be applied on assembly language also

• Peephole optimization is effective for 
improving assembly code
– The “peephole” is a short sequence of (usually 

contiguous) instructions
– The optimizer replaces the sequence with another 

equivalent one (but faster)
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Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement rules
i1, …, in ® j1, …, jm

where the rhs is the improved version of the lhs

• Example:
move $a $b, move $b $a ® move $a $b

– Works if move $b $a is not the target of a jump

• Another example
addiu $a $a i, addiu $a $a j ® addiu $a $a i+j
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Peephole Optimizations (Cont.)

• Many (but not all) of the basic block 
optimizations can be cast as peephole 
optimizations
– Example: addiu $a $b 0  ® move $a $b
– Example: move $a $a       ®
– These two together eliminate addiu $a $a 0

• As for local optimizations, peephole 
optimizations must be applied repeatedly for 
maximum effect
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Local Optimizations: Notes

• Intermediate code is helpful for many optimizations

• Many simple optimizations can still be applied on 
assembly language

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in any 

reasonable sense
– “Program improvement” is a more appropriate term

• Next time: global optimizations


