
1

Global Optimization

Lecture 15

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

2

Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis

3

Local Optimization

Recall the simple basic-block optimizations
– Constant propagation
– Dead code elimination

X := 3
Y := Z * W

Q := X + Y

X := 3
Y := Z * W

Q := 3 + Y

Y := Z * W
Q := 3 + Y

4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X

5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X

6

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * 3

7

Correctness

• How do we know it is OK to globally propagate
constants?

• There are situations where it is incorrect:
X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X

8

Correctness (Cont.)

To replace a use of x by a constant k we must
know that:

On every path to the use of x, the last
assignment to x is x := k **

9

Example 1 Revisited

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X

10

Example 2 Revisited

X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X

11

Discussion

• The correctness condition is not trivial to
check

• “All paths” includes paths around loops and
through branches of conditionals

• Checking the condition requires global analysis
– An analysis of the entire control-flow graph

12

Global Analysis

Global optimization tasks share several traits:
– The optimization depends on knowing a property X

at a particular point in program execution
– Proving X at any point requires knowledge of the

entire function
– It is OK to be conservative. If the optimization

requires X to be true, then want to know either
• X is definitely true
• Don’t know if X is true

– It is always safe to say “don’t know”

13

Global Analysis (Cont.)

• Global dataflow analysis is a standard
technique for solving problems with these
characteristics

• Global constant propagation is one example of
an optimization that requires global dataflow
analysis

14

Global Constant Propagation

• Global constant propagation can be performed
at any point where ** holds

• Consider the case of computing ** for a single
variable X at all program points

15

Global Constant Propagation (Cont.)

• To make the problem precise, we associate one
of the following values with X at every
program point

value interpretation

⏊ This statement
never executes

c X = constant c

⏉ X is not a constant

16

Example

X = ⏉
X = 3

X = 3

X = 3
X = 4

X = ⏉

X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X
X := 2

X = 3

X = 3

X = ⏉

X = 2

17

Using the Information

• Given global constant information, it is easy to
perform the optimization
– Simply inspect the x = ? associated with a

statement using x
– If x is constant at that point replace that use of x

by the constant

• But how do we compute the properties x = ?

18

The Idea

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

19

Explanation

• The idea is to “push” or “transfer”
information from one statement to the next

• For each statement s, we compute information
about the value of x immediately before and
after s

C(s,x,in) = value of x before s
C(s,x,out) = value of x after s

20

Transfer Functions

• Define a transfer function that transfers
information from one statement to another

• In the following rules, let statement s have
immediate predecessor statements p1,…,pn

21

Rule 1

if C(pi, x, out) = ⏉ for any i, then C(s, x, in) = ⏉

s

X = ⏉

X = ⏉

X = ?X = ?X = ?

22

Rule 2

C(pi, x, out) = c & C(pj, x, out) = d & d <> c then
C(s, x, in) = ⏉

s

X = d

X = ⏉

X = ?X = ?X = c

23

Rule 3

if C(pi, x, out) = c or ⏊ for all i,
then C(s, x, in) = c

s

X = c

X = c

X = ⏊X = ⏊X = c

24

Rule 4

if C(pi, x, out) = ⏊ for all i,
then C(s, x, in) = ⏊

s

X = ⏊

X = ⏊

X = ⏊X = ⏊X = ⏊

25

The Other Half

• Rules 1-4 relate the out of one statement to
the in of the next statement

• Now we need rules relating the in of a
statement to the out of the same statement

26

Rule 5

C(s, x, out) = ⏊ if C(s, x, in) = ⏊

s
X = ⏊

X = ⏊

27

Rule 6

C(x := c, x, out) = c if c is a constant

x := c
X = ?

X = c

28

Rule 7

C(x := e, x, out) = ⏉, where e is an expression
that is not a constant

x := e
X = ?

X = ⏉

29

Rule 8

C(y := …, x, out) = C(y := …, x, in) if x <> y

y := . . .
X = a

X = a

30

An Algorithm

1. For every entry s to the program, set
C(s, x, in) = ⏉

2. Set C(s, x, in) = C(s, x, out) = ⏊ everywhere
else

3. Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the

appropriate rule

31

The Value z
• To understand why we need ⏊, look at a loop

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

32

Discussion

• Consider the statement Y := 0
• To compute whether X is constant at this

point, we need to know whether X is constant
at the two predecessors
– X := 3
– A := 2 * X

• But info for A := 2 * X depends on its
predecessors, including Y := 0!

33

The Value z (Cont.)

• Because of cycles, all points must have values
at all times

• Intuitively, assigning some initial value allows
the analysis to break cycles

• The initial value ⏊ means “So far as we know
so far, control never reaches this point”

34

Example

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = ⏊

X = ⏊

X = ⏊

35

Example

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = ⏊

X = ⏊

X = 3

36

Example

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = ⏊

X = 3

X = 3

37

Example

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = 3

X = 3

X = 3

38

Orderings

• We can simplify the presentation of the
analysis by ordering the values

⏊ < c < ⏉

• Drawing a picture with “lower” values drawn
lower, we get

⏊

⏉

-1 0 1

39

Orderings (Cont.)

• ⏉ is the greatest value, ⏊ is the least
– All constants are in between and incomparable

• Let lub be the least-upper bound in this
ordering

• Rules 1-4 can be written using lub:
C(s, x, in) = lub { C(p, x, out) | p is a predecessor of s }

40

Termination

• Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

• The use of lub explains why the algorithm
terminates
– Values start as ⏊ and only increase
⏊ can change to a constant, and a constant to ⏉

– Thus, C(s, x, _) can change at most twice

41

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of C(….) value computed * 2 =
Number of program statements * 4

42

Liveness Analysis

Once constants have been globally propagated,
we would like to eliminate dead code

After constant propagation, X := 3 is dead
(assuming X not used elsewhere)

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X

43

Live and Dead

• The first value of x is
dead (never used)

• The second value of x is
live (may be used)

• Liveness is an important
concept

X := 3

X := 4

Y := X

44

Liveness

A variable x is live at statement s if
– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x

45

Global Dead Code Elimination

• A statement x := … is dead code if x is dead
after the assignment

• Dead statements can be deleted from the
program

• But we need liveness information first . . .

46

Computing Liveness

• We can express liveness in terms of
information transferred between adjacent
statements, just as in copy propagation

• Liveness is simpler than constant propagation,
since it is a boolean property (true or false)

47

Liveness Rule 1

L(p, x, out) = Ú { L(s, x, in) | s a successor of p }

p

X = true

X = true

X = ?X = ?X = ?

48

Liveness Rule 2

L(s, x, in) = true if s refers to x on the rhs

…:= f(x)
X = true

X = ?

49

Liveness Rule 3

L(x := e, x, in) = false if e does not refer to x

x := e
X = false

X = ?

50

Liveness Rule 4

L(s, x, in) = L(s, x, out) if s does not refer to x

s
X = a

X = a

51

Algorithm

1. Let all L(…) = false initially

2. Repeat until all statements s satisfy rules 1-4
Pick s where one of 1-4 does not hold and update

using the appropriate rule

52

Termination

• A value can change from false to true, but not
the other way around

• Each value can change only once, so
termination is guaranteed

• Once the analysis is computed, it is simple to
eliminate dead code

53

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is
pushed from outputs back towards inputs

54

Analysis

• There are many other global flow analyses

• Most can be classified as either forward or
backward

• Most also follow the methodology of local
rules relating information between adjacent
program points

