Lecture 15

Instructor: Fredrik Kjolstad Slide design by Prof. Alex Aiken, with modifications

1

Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis

Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

These optimizations can be extended to an entire control-flow graph

These optimizations can be extended to an entire control-flow graph

These optimizations can be extended to an entire control-flow graph

Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

Correctness (Cont.)

To replace a use of x by a constant k we must know that:

> On every path to the use of x, the last assignment to x is $x := k$ **

Example 1 Revisited

Example 2 Revisited

Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis – An analysis of the entire control-flow graph

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property X at a particular point in program execution
- $-$ Proving X at any point requires knowledge of the entire function
- It is OK to be conservative. If the optimization requires X to be true, then want to know either
	- X is definitely true
	- Don't know if X is true
- It is always safe to say "don't know"

Global Analysis (Cont.)

- Global dataflow analysis is a standard technique for solving problems with these characteristics
- Global constant propagation is one example of an optimization that requires global dataflow analysis

Global Constant Propagation

- Global constant propagation can be performed at any point where ** holds
- Consider the case of computing $**$ for a single variable X at all program points

Global Constant Propagation (Cont.)

• To make the problem precise, we associate one of the following values with X at every program point

Using the Information

- Given global constant information, it is easy to perform the optimization
	- Simply inspect the $x = ?$ associated with a statement using \times
	- If x is constant at that point replace that use of x by the constant
- But how do we compute the properties $x = ?$

The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements

Explanation

- The idea is to "push" or "transfer" information from one statement to the next
- For each statement s, we compute information about the value of x immediately before and after s

 $C(s,x,in)$ = value of x before s $C(s, x, out)$ = value of x after s Transfer Functions

- Define a *transfer* function that transfers information from one statement to another
- In the following rules, let statement s have immediate predecessor statements $p_1,...,p_n$

if $C(p_i, x, out) = T$ for any i, then $C(s, x, in) = T$

 $C(p_i, x, out) = c \& C(p_i, x, out) = d \& d \& c \text{ then}$
 $C(s, x, in) = T$

if $C(p_i, x, out) = c$ or \perp for all i, then $C(s, x, in) = c$

if $C(p_i, x, out) = \perp$ for all i, then $C(s, x, in) = \perp$

The Other Half

- Rules 1-4 relate the out of one statement to the in of the next statement
- Now we need rules relating the in of a statement to the *out* of the same statement

$C(s, x, out) = \perp$ if $C(s, x, in) = \perp$

 $C(x := c, x, out) = c$ if c is a constant

 $C(x := e, x, out) = T$, where e is an expression that is not a constant

 $C(y := ..., x, out) = C(y := ..., x, in)$ if $x \leftrightarrow y$

29

An Algorithm

- 1. For every entry s to the program, set $C(s, x, in) = \top$
- 2. Set $C(s, x, in) = C(s, x, out) = \perp$ everywhere else
- 3. Repeat until all points satisfy 1-8: Pick s not satisfying 1-8 and update using the appropriate rule

The Value Z

• To understand why we need \perp , look at a loop

Discussion

- Consider the statement $Y = 0$
- \cdot To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors

$$
- X := 3
$$

$$
- A := 2 * X
$$

• But info for $A \coloneq 2 * X$ depends on its predecessors, including $Y := 0!$

The Value **z** (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value \perp means "So far as we know so far, control never reaches this point"

Orderings

- We can simplify the presentation of the analysis by ordering the values $|\cdot c \cdot \top$
- Drawing a picture with "lower" values drawn lower, we get \top

Orderings (Cont.)

- \cdot \top is the greatest value, \bot is the least – All constants are in between and incomparable
- Let lub be the least-upper bound in this ordering
- Rules 1-4 can be written using lub: $C(s, x, in) = \text{lub} \{ C(p, x, out) \mid p \text{ is a predecessor of } s \}$

Termination

- Simply saying "repeat until nothing changes" doesn't guarantee that eventually nothing changes
- The use of lub explains why the algorithm terminates
	- Values start as \perp and only *increase* \perp can change to a constant, and a constant to \top - Thus, $C(s, x, _)$ can change at most twice

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = Number of $C(...)$ value computed $*$ 2 = Number of program statements * 4

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, $X = 3$ is dead (assuming X not used elsewhere)

Live and Dead

- \cdot The first value of x is dead (never used)
- \cdot The second value of x is live (may be used)
- Liveness is an important concept

Liveness

A variable x is live at statement s if

- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x

Global Dead Code Elimination

- A statement $x := ...$ is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

 $L(p, x, out) = \vee \{ L(s, x, in) | s a successor of p \}$

 $L(s, x, in)$ = true if s refers to x on the rhs

 $L(x := e, x, in)$ = false if e does not refer to x

$L(s, x, in) = L(s, x, out)$ if s does not refer to x

Algorithm

- 1. Let all $L(...)$ = false initially
- 2. Repeat until all statements s satisfy rules 1-4 Pick s where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from false to true, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We've seen two kinds of analysis:

Constant propagation is a forwards analysis: information is pushed from inputs to outputs

Liveness is a *backwards* analysis: information is pushed from outputs back towards inputs

Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points