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Global Optimization

Lecture 15

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
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Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
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Local Optimization

Recall the simple basic-block optimizations
– Constant propagation
– Dead code elimination

X := 3
Y := Z * W

Q := X + Y

X := 3
Y := Z * W

Q := 3 + Y

Y := Z * W
Q := 3 + Y



4

Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * 3
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Correctness

• How do we know it is OK to globally propagate 
constants?

• There are situations where it is incorrect:
X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X
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Correctness (Cont.)

To replace a use of x by a constant k we must 
know that:

On every path to the use of x, the last 
assignment to x is x := k    **
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Example 1 Revisited

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
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Example 2 Revisited

X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X
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Discussion

• The correctness condition is not trivial to 
check

• “All paths” includes paths around loops and 
through branches of conditionals

• Checking the condition requires global analysis
– An analysis of the entire control-flow graph
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Global Analysis

Global optimization tasks share several traits:
– The optimization depends on knowing a property X 

at a particular point in program execution
– Proving X at any point requires knowledge of the 

entire function
– It is OK to be conservative.  If the optimization 

requires X to be true, then want to know either
• X is definitely true
• Don’t know if X is true

– It is always safe to say “don’t know”
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Global Analysis (Cont.)

• Global dataflow analysis is a standard 
technique for solving problems with these 
characteristics

• Global constant propagation is one example of 
an optimization that requires global dataflow 
analysis
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Global Constant Propagation

• Global constant propagation can be performed 
at any point where ** holds

• Consider the case of computing ** for a single 
variable X at all program points
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Global Constant Propagation (Cont.)

• To make the problem precise, we associate one 
of the following values with X at every 
program point

value interpretation

⏊ This statement 
never executes

c X = constant c

⏉ X is not a constant
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Example

X = ⏉
X = 3

X = 3

X = 3
X = 4

X = ⏉

X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X
X := 2

X = 3

X = 3

X = ⏉

X = 2
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Using the Information

• Given global constant information, it is easy to 
perform the optimization
– Simply inspect the x = ? associated with a 

statement using x
– If x is constant at that point replace that use of x

by the constant

• But how do we compute the properties x = ?
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The Idea

The analysis of a complicated program can be 
expressed as a combination of simple rules 
relating the change in information between 

adjacent statements
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Explanation

• The idea is to “push” or “transfer”
information from one statement to the next

• For each statement s, we compute information 
about the value of x immediately before and 
after s

C(s,x,in) = value of x before s
C(s,x,out) = value of x after s
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Transfer Functions

• Define a transfer function that transfers 
information from one statement to another

• In the following rules, let statement s have 
immediate predecessor statements p1,…,pn
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Rule 1

if C(pi, x, out) = ⏉ for any i, then C(s, x, in) = ⏉

s

X = ⏉

X = ⏉

X = ?X = ?X = ?
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Rule 2

C(pi, x, out) = c  & C(pj, x, out) = d  &  d <> c then 
C(s, x, in) = ⏉

s

X = d

X = ⏉

X = ?X = ?X = c
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Rule 3

if C(pi, x, out) = c  or ⏊ for all i,
then C(s, x, in) = c

s

X = c

X = c

X = ⏊X = ⏊X = c
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Rule 4

if C(pi, x, out) = ⏊ for all i,
then C(s, x, in) = ⏊

s

X = ⏊

X = ⏊

X = ⏊X = ⏊X = ⏊
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The Other Half

• Rules 1-4 relate the out of one statement to 
the in of the next statement

• Now we need rules relating the in of a 
statement to the out of the same statement
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Rule 5

C(s, x, out) = ⏊ if C(s, x, in) = ⏊

s
X = ⏊

X = ⏊
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Rule 6

C(x := c, x, out) = c if c is a constant

x := c
X = ?

X = c
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Rule 7

C(x := e, x, out) = ⏉, where e is an expression 
that is not a constant

x := e
X = ?

X = ⏉
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Rule 8

C(y := …, x, out) = C(y := …, x, in)  if x <> y

y := . . .
X = a

X = a
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An Algorithm

1. For every entry s to the program,  set       
C(s, x, in) = ⏉

2. Set C(s, x, in) = C(s, x, out) = ⏊ everywhere 
else

3. Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the 

appropriate rule
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The Value z
• To understand why we need ⏊, look at a loop

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3
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Discussion

• Consider the statement Y := 0
• To compute whether X is constant at this 

point, we need to know whether X is constant 
at the two predecessors
– X := 3
– A := 2 * X

• But info for A := 2 * X depends on its 
predecessors, including Y := 0!
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The Value z (Cont.)

• Because of cycles, all points must have values 
at all times

• Intuitively, assigning some initial value allows 
the analysis to break cycles

• The initial value ⏊ means “So far as we know 
so far, control never reaches this point”
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Example

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = ⏊

X = ⏊

X = ⏊



35

Example
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X = 3
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Example
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A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = ⏊
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Example

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
A < B

X = ⏉
X = 3

X = 3

X = 3

X = 3

X = 3

X = 3

X = 3
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Orderings

• We can simplify the presentation of the 
analysis by ordering the values

⏊ < c < ⏉

• Drawing a picture with “lower” values drawn 
lower, we get

⏊

⏉

-1 0 1
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Orderings (Cont.)

• ⏉ is the greatest value, ⏊ is the least
– All constants are in between and incomparable

• Let lub be the least-upper bound in this 
ordering

• Rules 1-4 can be written using lub:
C(s, x, in) = lub { C(p, x, out) | p is a predecessor of s }
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Termination

• Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing 
changes

• The use of lub explains why the algorithm 
terminates
– Values start as ⏊ and only increase
⏊ can change to a constant, and a constant to ⏉

– Thus, C(s, x, _) can change at most twice
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Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = 
Number of C(….) value computed * 2 =
Number of program statements * 4
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Liveness Analysis

Once constants have been globally propagated, 
we would like to eliminate dead code

After constant propagation, X := 3 is dead 
(assuming X not used elsewhere)

X := 3
B > 0

Y := Z + W Y := 0

A := 2 * X
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Live and Dead

• The first value of x is 
dead (never used)

• The second value of x is 
live (may be used)

• Liveness is an important 
concept

X := 3

X := 4

Y := X
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Liveness

A variable x is live at statement s if
– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x
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Global Dead Code Elimination

• A statement x := … is dead code if x is dead 
after the assignment

• Dead statements can be deleted from the 
program

• But we need liveness information first . . .
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Computing Liveness

• We can express liveness in terms of 
information transferred between adjacent 
statements, just as in copy propagation

• Liveness is simpler than constant propagation, 
since it is a boolean property (true or false)
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Liveness Rule 1

L(p, x, out) =  Ú { L(s, x, in) | s a successor of p }

p

X = true

X = true

X = ?X = ?X = ?



48

Liveness Rule 2

L(s, x, in) = true if s refers to x on the rhs

…:= f(x)
X = true

X = ?
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Liveness Rule 3

L(x := e, x, in) = false if e does not refer to x

x := e
X = false

X = ?
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Liveness Rule 4

L(s, x, in) = L(s, x, out) if s does not refer to x

s
X = a

X = a
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Algorithm

1. Let all L(…) = false initially

2. Repeat until all statements s satisfy rules 1-4
Pick s where one of 1-4 does not hold and update 

using the appropriate rule
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Termination

• A value can change from false to true, but not 
the other way around

• Each value can change only once, so 
termination is guaranteed

• Once the analysis is computed, it is simple to 
eliminate dead code
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Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis: 
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is 
pushed from outputs back towards inputs
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Analysis

• There are many other global flow analyses

• Most can be classified as either forward or 
backward

• Most also follow the methodology of local 
rules relating information between adjacent 
program points


