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Register Allocation

Lecture 16

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications
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Lecture Outline

• Memory Hierarchy Management

• Register Allocation
– Register interference graph

– Graph coloring heuristics

– Spilling

• Cache Management
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The Memory Hierarchy

Registers       1 cycle          256-8000 bytes

Cache             3 cycles            256k-40MB

Main memory   20-100 cycles    4GB-32+G

Disk                0.5-5M cycles    1-10TB’s
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Managing the Memory Hierarchy

• Most programs are written as if there are 
only two kinds of memory: main memory and 
disk
– Programmer is responsible for moving data from 

disk to memory (e.g., file I/O)
– Hardware is responsible for moving data between 

memory and caches
– Compiler is responsible for moving data between 

memory and registers
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Current Trends

• Power usage limits 
– Size and speed of registers/caches
– Speed of processors

• But
– The cost of a cache miss is very high
– Typically requires 2-3 caches to bridge fast processor with 

large main memory
• It is very important to:

– Manage registers properly
– Manage caches properly

• Compilers are good at managing registers
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The Register Allocation Problem

• Intermediate code uses unlimited temporaries
– Simplifies code generation and optimization
– Complicates final translation to assembly

• Typical intermediate code uses too many 
temporaries
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The Register Allocation Problem (Cont.)

• The problem:
Rewrite the intermediate code to use no more 
temporaries than there are machine registers

• Method: 
– Assign multiple temporaries to each register
– But without changing the program behavior
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History

• Register allocation is as old as compilers
– Register allocation was used in the original 

FORTRAN compiler in the ‘50s
– Very crude algorithms

• A breakthrough came in 1980 
– Register allocation scheme based on graph coloring
– Relatively simple, global and works well in practice
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An Example

• Consider the program

a := c + d
e := a + b
f := e - 1

• Assume a and e dead 
after use
– Temporary a can be 
“reused” after a + b

– Temporary e can be 
“reused” after e - 1

• Can allocate a, e, and f 
all to one register (r1):

r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

• A dead temporary is not 
needed 
– A dead temporary can be 

reused
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The Idea

Temporaries t1 and t2 can share the same 
register if at any point in the program at 
most one of t1 or t2 is live .

Or

If t1 and t2 are live at the same time, they 
cannot share a register
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Algorithm: Part I

• Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}
{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}
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The Register Interference Graph

• Construct an undirected graph
– A node for each temporary
– An edge between t1 and t2 if they are live 

simultaneously at some point in the program

• This is the register interference graph (RIG)
– Two temporaries can be allocated to the same 

register if there is no edge connecting them
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Example

• For our example:
a

f

e

d

c

b

• E.g., b and c cannot be in the same register
• E.g., b and d could be in the same register
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Notes on Register Interference Graphs

• Extracts exactly the information needed to 
characterize legal register assignments

• Gives a global (i.e., over the entire flow graph) 
picture of the register requirements

• After RIG construction the register allocation 
algorithm is architecture independent
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Definitions

• A coloring of a graph is an assignment of 
colors to nodes, such that nodes connected by 
an edge have different colors

• A graph is k-colorable if it has a coloring with 
k colors
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Register Allocation Through Graph Coloring

• In our problem, colors = registers
– We need to assign colors (registers) to graph nodes 

(temporaries)

• Let k = number of machine registers

• If the RIG is k-colorable then there is a 
register assignment that uses no more than k 
registers
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Graph Coloring Example

• Consider the example RIG
a

f

e

d

c

b

• There is no coloring with less than 4 colors
• There are 4-colorings of this graph

r4

r1

r2

r3

r2

r3
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Example Review

a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c
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Example After Register Allocation

• Under this coloring the code becomes:
r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r1 := 2 * r2
r3 := r3 + r2
r2 := r2 - 1

r3 := r1 + r4
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Computing Graph Colorings

• How do we compute graph colorings?

• It isn’t easy:
1. This problem is very hard (NP-hard). No efficient 

algorithms are known.
– Solution: use heuristics

2. A coloring might not exist for a given number of 
registers
– Solution: later
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Graph Coloring Heuristic

• Observation:
– Pick a node t with fewer than k neighbors in RIG
– Eliminate t and its edges from RIG
– If resulting graph is k-colorable,  then so is the 

original graph

• Why?
– Let c1,…,cn be the colors assigned to the neighbors 

of t in the reduced graph
– Since n < k we can pick some color for t that is 

different from those of its neighbors
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Graph Coloring Heuristic

• The following works well in practice:
– Pick a node t with fewer than k neighbors
– Put t on a stack and remove it from the RIG
– Repeat until the graph has one node

• Assign colors to nodes on the stack 
– Start with the last node added
– At each step pick a color different from those 

assigned to already colored neighbors



23

Graph Coloring Example (1)

• Remove a

a

f

e

d

c

b

• Start with the RIG and with k = 4:

Stack: {} 
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Graph Coloring Example (2)

• Remove d

f

e

d

c

b
Stack: {a} 
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Graph Coloring Example (3)

• Note: all nodes now have fewer than 4 
neighbors 

f

e c

b
Stack: {d, a} 

• Remove c
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Graph Coloring Example (4)

f

e

b
Stack: {c, d, a} 

• Remove b
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Graph Coloring Example (5)

f

e

Stack: {b, c, d, a} 

• Remove e
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Graph Coloring Example (6)

f
Stack: {e, b, c, d, a} 

• Remove f
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Graph Coloring Example (7)

• Now start assigning colors to nodes, starting 
with the top of the stack

Stack: {f, e, b, c, d, a} 
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Graph Coloring Example (8)

f
Stack: {e, b, c, d, a} 

r1
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Graph Coloring Example (9)

f

e

Stack: {b, c, d, a} 

• e must be in a different register from f

r1

r2
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Graph Coloring Example (10)

f

e

b
Stack: {c, d, a} 

r1

r2

r3
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Graph Coloring Example (11)

f

e c

b
Stack: {d, a} 

r1

r2

r3

r4
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Graph Coloring Example (12)

• d can be in the same register as b

f

e

d

c

b
Stack: {a} 

r1

r2

r3

r4

r3
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Graph Coloring Example (13)

b
a

e c r4

fr1

r2

r3

r2

r3

d
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What if the Heuristic Fails?

• What if all nodes have k or more neighbors ?

• Example: Try to find a 3-coloring of the RIG:

a

f

e

d

c

b
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What if the Heuristic Fails?

• Remove a and get stuck (as shown below)

f

e

d

c

b

• Pick a node as a candidate for spilling
– A spilled temporary “lives” in memory
– Assume that f is picked as a candidate
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What if the Heuristic Fails?

• Remove f and continue the simplification
– Simplification now succeeds: b, d, e, c

e

d

c

b
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What if the Heuristic Fails?

• Eventually we must assign a color to f

• We hope that among the 4 neighbors of f we 
use less than 3 colors Þ optimistic coloring

f

e

d

c

b r3

r1r2
r3

?
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Spilling

• If optimistic coloring fails, we spill f
– Allocate a memory location for f

• Typically in the current stack frame 
• Call this address fa

• Before each operation that reads f, insert
f := load fa

• After each operation that writes f, insert
store f, fa



41

Spilling Example

• This is the new code after spilling f
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c



A Problem

• This code reuses the register name f

• Correct, but suboptimal
– Should use distinct register names whenever 

possible
– Allows different uses to have different colors

42
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Spilling Example

• This is the new code after spilling f
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c
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Recomputing Liveness Information

• The new liveness information after spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f1}

{c,f2}

{c,f3}
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Recomputing Liveness Information

• New liveness information is almost as before
– Note f has been split into three temporaries

• fi is live only
– Between a fi := load fa and the next instruction
– Between a store fi, fa and the preceding instr.

• Spilling reduces the live range of f
– And thus reduces its interferences
– Which results in fewer RIG neighbors
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Recompute RIG After Spilling

• Some edges of the spilled node are removed
• In our case f still interferes only with c and d
• And the resulting RIG is 3-colorable

a

f1

e

d

c

b
f3

f2
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Spilling Notes

• Additional spills might be required before a 
coloring is found

• The tricky part is deciding what to spill
– But any choice is correct

• Possible heuristics:
– Spill temporaries with most conflicts
– Spill temporaries with few definitions and uses
– Avoid spilling in inner loops
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Caches

• Compilers are very good at managing registers
– Much better than a programmer could be

• Compilers are not good at managing caches
– This problem is still left to programmers
– It is still an open question how much a compiler can 

do to improve cache performance

• Compilers can, and a few do, perform some 
cache optimizations
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Cache Optimization

• Consider the loop
for(j := 1; j < 10; j++)

for(i=1; i<1000; i++) 
a[i] *= b[i]

• This program has terrible cache 
performance

• Why?
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Cache Optimization (Cont.)

• Consider the program:
for(i=1; i<1000; i++) 

for(j := 1; j < 10; j++)
a[i] *= b[i]

– Computes the same thing
– But with much better cache behavior
– Might actually be more than 10x faster

• A compiler can perform this optimization
– called loop interchange
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Conclusions

• Register allocation is a “must have” in 
compilers:
– Because intermediate code uses too many 

temporaries
– Because it makes a big difference in performance 

• Register allocation is more complicated for 
CISC machines


