
1

Register Allocation

Lecture 16

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

2

Lecture Outline

• Memory Hierarchy Management

• Register Allocation
– Register interference graph

– Graph coloring heuristics

– Spilling

• Cache Management

3

The Memory Hierarchy

Registers 1 cycle 256-8000 bytes

Cache 3 cycles 256k-40MB

Main memory 20-100 cycles 4GB-32+G

Disk 0.5-5M cycles 1-10TB’s

4

Managing the Memory Hierarchy

• Most programs are written as if there are
only two kinds of memory: main memory and
disk
– Programmer is responsible for moving data from

disk to memory (e.g., file I/O)
– Hardware is responsible for moving data between

memory and caches
– Compiler is responsible for moving data between

memory and registers

5

Current Trends

• Power usage limits
– Size and speed of registers/caches
– Speed of processors

• But
– The cost of a cache miss is very high
– Typically requires 2-3 caches to bridge fast processor with

large main memory
• It is very important to:

– Manage registers properly
– Manage caches properly

• Compilers are good at managing registers

6

The Register Allocation Problem

• Intermediate code uses unlimited temporaries
– Simplifies code generation and optimization
– Complicates final translation to assembly

• Typical intermediate code uses too many
temporaries

7

The Register Allocation Problem (Cont.)

• The problem:
Rewrite the intermediate code to use no more
temporaries than there are machine registers

• Method:
– Assign multiple temporaries to each register
– But without changing the program behavior

8

History

• Register allocation is as old as compilers
– Register allocation was used in the original

FORTRAN compiler in the ‘50s
– Very crude algorithms

• A breakthrough came in 1980
– Register allocation scheme based on graph coloring
– Relatively simple, global and works well in practice

9

An Example

• Consider the program

a := c + d
e := a + b
f := e - 1

• Assume a and e dead
after use
– Temporary a can be
“reused” after a + b

– Temporary e can be
“reused” after e - 1

• Can allocate a, e, and f
all to one register (r1):

r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

• A dead temporary is not
needed
– A dead temporary can be

reused

10

The Idea

Temporaries t1 and t2 can share the same
register if at any point in the program at
most one of t1 or t2 is live .

Or

If t1 and t2 are live at the same time, they
cannot share a register

11

Algorithm: Part I

• Compute live variables for each point:
a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

{b}

{c,e}

{b}
{c,f} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

12

The Register Interference Graph

• Construct an undirected graph
– A node for each temporary
– An edge between t1 and t2 if they are live

simultaneously at some point in the program

• This is the register interference graph (RIG)
– Two temporaries can be allocated to the same

register if there is no edge connecting them

13

Example

• For our example:
a

f

e

d

c

b

• E.g., b and c cannot be in the same register
• E.g., b and d could be in the same register

14

Notes on Register Interference Graphs

• Extracts exactly the information needed to
characterize legal register assignments

• Gives a global (i.e., over the entire flow graph)
picture of the register requirements

• After RIG construction the register allocation
algorithm is architecture independent

15

Definitions

• A coloring of a graph is an assignment of
colors to nodes, such that nodes connected by
an edge have different colors

• A graph is k-colorable if it has a coloring with
k colors

16

Register Allocation Through Graph Coloring

• In our problem, colors = registers
– We need to assign colors (registers) to graph nodes

(temporaries)

• Let k = number of machine registers

• If the RIG is k-colorable then there is a
register assignment that uses no more than k
registers

17

Graph Coloring Example

• Consider the example RIG
a

f

e

d

c

b

• There is no coloring with less than 4 colors
• There are 4-colorings of this graph

r4

r1

r2

r3

r2

r3

18

Example Review

a := b + c
d := -a
e := d + f

f := 2 * e
b := d + e
e := e - 1

b := f + c

19

Example After Register Allocation

• Under this coloring the code becomes:
r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r1 := 2 * r2
r3 := r3 + r2
r2 := r2 - 1

r3 := r1 + r4

20

Computing Graph Colorings

• How do we compute graph colorings?

• It isn’t easy:
1. This problem is very hard (NP-hard). No efficient

algorithms are known.
– Solution: use heuristics

2. A coloring might not exist for a given number of
registers
– Solution: later

21

Graph Coloring Heuristic

• Observation:
– Pick a node t with fewer than k neighbors in RIG
– Eliminate t and its edges from RIG
– If resulting graph is k-colorable, then so is the

original graph

• Why?
– Let c1,…,cn be the colors assigned to the neighbors

of t in the reduced graph
– Since n < k we can pick some color for t that is

different from those of its neighbors

22

Graph Coloring Heuristic

• The following works well in practice:
– Pick a node t with fewer than k neighbors
– Put t on a stack and remove it from the RIG
– Repeat until the graph has one node

• Assign colors to nodes on the stack
– Start with the last node added
– At each step pick a color different from those

assigned to already colored neighbors

23

Graph Coloring Example (1)

• Remove a

a

f

e

d

c

b

• Start with the RIG and with k = 4:

Stack: {}

24

Graph Coloring Example (2)

• Remove d

f

e

d

c

b
Stack: {a}

25

Graph Coloring Example (3)

• Note: all nodes now have fewer than 4
neighbors

f

e c

b
Stack: {d, a}

• Remove c

26

Graph Coloring Example (4)

f

e

b
Stack: {c, d, a}

• Remove b

27

Graph Coloring Example (5)

f

e

Stack: {b, c, d, a}

• Remove e

28

Graph Coloring Example (6)

f
Stack: {e, b, c, d, a}

• Remove f

29

Graph Coloring Example (7)

• Now start assigning colors to nodes, starting
with the top of the stack

Stack: {f, e, b, c, d, a}

30

Graph Coloring Example (8)

f
Stack: {e, b, c, d, a}

r1

31

Graph Coloring Example (9)

f

e

Stack: {b, c, d, a}

• e must be in a different register from f

r1

r2

32

Graph Coloring Example (10)

f

e

b
Stack: {c, d, a}

r1

r2

r3

33

Graph Coloring Example (11)

f

e c

b
Stack: {d, a}

r1

r2

r3

r4

34

Graph Coloring Example (12)

• d can be in the same register as b

f

e

d

c

b
Stack: {a}

r1

r2

r3

r4

r3

35

Graph Coloring Example (13)

b
a

e c r4

fr1

r2

r3

r2

r3

d

36

What if the Heuristic Fails?

• What if all nodes have k or more neighbors ?

• Example: Try to find a 3-coloring of the RIG:

a

f

e

d

c

b

37

What if the Heuristic Fails?

• Remove a and get stuck (as shown below)

f

e

d

c

b

• Pick a node as a candidate for spilling
– A spilled temporary “lives” in memory
– Assume that f is picked as a candidate

38

What if the Heuristic Fails?

• Remove f and continue the simplification
– Simplification now succeeds: b, d, e, c

e

d

c

b

39

What if the Heuristic Fails?

• Eventually we must assign a color to f

• We hope that among the 4 neighbors of f we
use less than 3 colors Þ optimistic coloring

f

e

d

c

b r3

r1r2
r3

?

40

Spilling

• If optimistic coloring fails, we spill f
– Allocate a memory location for f

• Typically in the current stack frame
• Call this address fa

• Before each operation that reads f, insert
f := load fa

• After each operation that writes f, insert
store f, fa

41

Spilling Example

• This is the new code after spilling f
a := b + c
d := -a
f := load fa
e := d + f

f := 2 * e
store f, fa

b := d + e
e := e - 1

f := load fa
b := f + c

A Problem

• This code reuses the register name f

• Correct, but suboptimal
– Should use distinct register names whenever

possible
– Allows different uses to have different colors

42

43

Spilling Example

• This is the new code after spilling f
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

44

Recomputing Liveness Information

• The new liveness information after spilling:
a := b + c
d := -a
f1 := load fa
e := d + f1

f2 := 2 * e
store f2, fa

b := d + e
e := e - 1

f3 := load fa
b := f3 + c

{b}

{c,e}

{b}
{c,f}

{c,f}
{b,c,e,f}

{c,d,e,f}

{b,c,f}
{c,d,f}
{a,c,f}

{c,d,f1}

{c,f2}

{c,f3}

45

Recomputing Liveness Information

• New liveness information is almost as before
– Note f has been split into three temporaries

• fi is live only
– Between a fi := load fa and the next instruction
– Between a store fi, fa and the preceding instr.

• Spilling reduces the live range of f
– And thus reduces its interferences
– Which results in fewer RIG neighbors

46

Recompute RIG After Spilling

• Some edges of the spilled node are removed
• In our case f still interferes only with c and d
• And the resulting RIG is 3-colorable

a

f1

e

d

c

b
f3

f2

47

Spilling Notes

• Additional spills might be required before a
coloring is found

• The tricky part is deciding what to spill
– But any choice is correct

• Possible heuristics:
– Spill temporaries with most conflicts
– Spill temporaries with few definitions and uses
– Avoid spilling in inner loops

48

Caches

• Compilers are very good at managing registers
– Much better than a programmer could be

• Compilers are not good at managing caches
– This problem is still left to programmers
– It is still an open question how much a compiler can

do to improve cache performance

• Compilers can, and a few do, perform some
cache optimizations

49

Cache Optimization

• Consider the loop
for(j := 1; j < 10; j++)

for(i=1; i<1000; i++)
a[i] *= b[i]

• This program has terrible cache
performance

• Why?

50

Cache Optimization (Cont.)

• Consider the program:
for(i=1; i<1000; i++)

for(j := 1; j < 10; j++)
a[i] *= b[i]

– Computes the same thing
– But with much better cache behavior
– Might actually be more than 10x faster

• A compiler can perform this optimization
– called loop interchange

51

Conclusions

• Register allocation is a “must have” in
compilers:
– Because intermediate code uses too many

temporaries
– Because it makes a big difference in performance

• Register allocation is more complicated for
CISC machines

